Abstract

Enhancement of a nonlinear optical interaction through waveguides or resonators disclose unconventional interplay among multiple lights. Microresonator-based optical frequency comb (OFC) generation via third order nonlinearity is a typical example of such enhancements. Recently, quadratic-nonlinearity-based OFC with an external cavity configuration has been found and its on-chip implementation is highly demanded. Here we for the first time demonstrate such an on-chip OFC with a quadratic nonlinear waveguide resonator. Furthermore, we controlled the comb spectra separation by adjusting frequency difference of two pump light. This on-chip quadratic device will be useful for not only metrologies but also integrated quantum information technologies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical frequency comb generation through quasi-phase matched quadratic frequency conversion in a micro-ring resonator

Zi-jian Wu, Yang Ming, Fei Xu, and Yan-qing Lu
Opt. Express 20(15) 17192-17200 (2012)

AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs

Maria Parisi, Natália Morais, Iolanda Ricciardi, Simona Mosca, Tobias Hansson, Stefan Wabnitz, Giuseppe Leo, and Maurizio De Rosa
J. Opt. Soc. Am. B 34(9) 1842-1847 (2017)

High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator

Ville Ulvila, C. R. Phillips, Lauri Halonen, and Markku Vainio
Opt. Express 22(9) 10535-10543 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [Crossref] [PubMed]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
    [Crossref] [PubMed]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature. 416, 233–237 (2002).
    [Crossref] [PubMed]
  4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
    [Crossref]
  5. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [Crossref] [PubMed]
  6. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
    [Crossref] [PubMed]
  7. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref] [PubMed]
  8. T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
    [Crossref]
  9. T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” science 332, 555–559 (2011).
    [Crossref] [PubMed]
  10. G. I. Stegeman, “cascading: nonlinear phase shifts,” Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B 9, 139 (1997).
    [Crossref]
  11. C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
    [Crossref]
  12. C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo 3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
    [Crossref] [PubMed]
  13. V. Ulvila, C. Phillips, L. Halonen, and M. Vainio, “Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities,” Opt. Lett. 38, 4281–4284 (2013).
    [Crossref] [PubMed]
  14. V. Ulvila, C. Phillips, L. Halonen, and M. Vainio, “High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator,” Opt. express 22, 10535–10543 (2014).
    [Crossref] [PubMed]
  15. I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
    [Crossref]
  16. F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
    [Crossref] [PubMed]
  17. F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
    [Crossref]
  18. S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
    [Crossref]
  19. M. Houe and P. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747 (1995).
    [Crossref]
  20. V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
    [Crossref]
  21. O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
    [Crossref]
  22. E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
    [Crossref]
  23. K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
    [Crossref]
  24. N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
    [Crossref] [PubMed]
  25. Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
    [Crossref]
  26. T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
    [Crossref]
  27. A. Tanaka, R. Okamoto, H. H. Lim, S. Subashchandran, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, T. Hirohata, S. Kurimura, and S. Takeuchi, “Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement,” Opt. Express 20, 25228–25238 (2012).
    [Crossref] [PubMed]
  28. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
    [Crossref] [PubMed]
  29. P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
    [Crossref]
  30. T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
    [Crossref]

2017 (1)

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
[Crossref]

2016 (6)

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

2015 (3)

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (3)

A. Tanaka, R. Okamoto, H. H. Lim, S. Subashchandran, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, T. Hirohata, S. Kurimura, and S. Takeuchi, “Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement,” Opt. Express 20, 25228–25238 (2012).
[Crossref] [PubMed]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

2011 (4)

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” science 332, 555–559 (2011).
[Crossref] [PubMed]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref] [PubMed]

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo 3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref] [PubMed]

2010 (1)

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref] [PubMed]

2008 (2)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature. 416, 233–237 (2002).
[Crossref] [PubMed]

2000 (2)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

1998 (1)

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

1997 (1)

G. I. Stegeman, “cascading: nonlinear phase shifts,” Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B 9, 139 (1997).
[Crossref]

1995 (1)

M. Houe and P. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747 (1995).
[Crossref]

Ahlrichs, A.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
[Crossref]

Alibart, O.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

Benson, O.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
[Crossref]

Bienfang, J. C.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Bonfrate, G.

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

Brecht, B.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Chembo, Y. K.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref] [PubMed]

Chen, J.

Coen, S.

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

D’Auria, V.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

De Micheli, M.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

De Natale, P.

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

De Rosa, M.

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

Diddams, S.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” science 332, 555–559 (2011).
[Crossref] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Doutre, F.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Erkintalo, M.

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

Fejer, M.

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo 3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref] [PubMed]

C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
[Crossref]

Fejer, M. M.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Fermann, M. E.

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo 3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref] [PubMed]

C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
[Crossref]

Flammia, S. T.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Foster, M. A.

Gaeta, A. L.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Gong, Y.-X.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Gorodetsky, M.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Halonen, L.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature. 416, 233–237 (2002).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Hansson, T.

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Hartl, I.

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo 3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref] [PubMed]

C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
[Crossref]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Herrmann, H.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

Hirohata, T.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” science 332, 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature. 416, 233–237 (2002).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Houe, M.

M. Houe and P. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747 (1995).
[Crossref]

Huang, Y.-P.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Ikuta, R.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Imoto, N.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Jain, N.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Jiang, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Kaiser, F.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Kang, L.

Kanter, G. S.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kazansky, P.

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

Kippenberg, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” science 332, 555–559 (2011).
[Crossref] [PubMed]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Koashi, M.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kobayashi, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Krapick, S.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Kroh, T.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
[Crossref]

Kumar, P.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Kurimura, S.

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Kuzucu, O.

Labonté, L.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Langrock, C.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

C. Phillips, C. Langrock, J. Pelc, M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo 3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011).
[Crossref] [PubMed]

C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
[Crossref]

Leo, F.

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

Levenson, J.

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

Levy, J. S.

Liang, J.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Lim, H. H.

Lipson, M.

Lunghi, T.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Luo, K.-H.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Maddaloni, P.

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Manurkar, P.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Menicucci, N. C.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Miki, S.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Mosca, S.

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Okamoto, R.

Okano, M.

Osorio, C. I.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

Parisi, M.

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Pelc, J.

Pfister, O.

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

Phillips, C.

Picholle, É.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Pomarico, E.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

Pruneri, V.

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

Quiring, V.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Restelli, A.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Ricciardi, I.

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Ricken, R.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Saha, K.

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

Santamaria, L.

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Shapiro, J. H.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Shrestha, S.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Silberhorn, C.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Silver, M.

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Simonneau, C.

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

Sohler, W.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Sprenger, B.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “cascading: nonlinear phase shifts,” Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B 9, 139 (1997).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Strekalov, D. V.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref] [PubMed]

Subashchandran, S.

Suche, H.

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Takeuchi, S.

Tanaka, A.

Tanzilli, S.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Terai, H.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Thew, R. T.

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

Townsend, P.

M. Houe and P. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747 (1995).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature. 416, 233–237 (2002).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Ulvila, V.

Vainio, M.

Vidakovic, P.

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

Wabnitz, S.

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Wang, C.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Wong, C. W.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Wong, F. N.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Wu, P.

Xie, Z.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Xu, X.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Yamamoto, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Yamashita, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Yasui, S.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Yu, N.

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref] [PubMed]

Zhang, L.

Zhong, T.

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

Appl. Phys. Lett. (1)

V. Pruneri, G. Bonfrate, P. Kazansky, C. Simonneau, P. Vidakovic, and J. Levenson, “Efficient frequency doubling of 1.5 μm femtosecond laser pulses in quasi-phase-matched optical fibers,” Appl. Phys. Lett. 72, 1007–1009 (1998).
[Crossref]

J. Opt. (1)

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Houe and P. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747 (1995).
[Crossref]

Nanophotonics (1)

S. Mosca, I. Ricciardi, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Direct generation of optical frequency combs in χ (2) nonlinear cavities,” Nanophotonics 5, 316–331 (2016).
[Crossref]

Nat. Commun. (1)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 1544 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9, 536 (2015).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain hong-ou-mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. Gorodetsky, and T. Kippenberg, “Universal formation dynamics and noise of kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Nature. (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature. 416, 233–237 (2002).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature. 450, 1214–1217 (2007).
[Crossref]

New J. Phys. (2)

E. Pomarico, B. Sanguinetti, C. I. Osorio, H. Herrmann, and R. T. Thew, “Engineering integrated pure narrow-band photon sources,” New J. Phys. 14, 033008 (2012).
[Crossref]

K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, “Direct generation of genuine single-longitudinal-mode narrowband photon pairs,” New J. Phys. 17, 073039 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. letters (1)

C. Langrock, M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. letters 32, 2478–2480 (2007).
[Crossref]

Optica. (1)

P. Manurkar, N. Jain, M. Silver, Y.-P. Huang, C. Langrock, M. M. Fejer, P. Kumar, and G. S. Kanter, “Multidimensional mode-separable frequency conversion for high-speed quantum communication,” Optica. 3, 1300–1307 (2016).
[Crossref]

Phys. Rev. A (2)

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Frequency comb generation in quadratic nonlinear media,” Phys. Rev. A 91, 063839 (2015).
[Crossref]

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Frequency-comb formation in doubly resonant second-harmonic generation,” Phys. Rev. A 93, 043831 (2016).
[Crossref]

Phys. Rev. Lett. (5)

F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo, “Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation,” Phys. Rev. Lett. 116, 033901 (2016).
[Crossref] [PubMed]

N. C. Menicucci, S. T. Flammia, and O. Pfister, “One-way quantum computing in the optical frequency comb,” Phys. Rev. Lett. 101, 130501 (2008).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref] [PubMed]

Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010).
[Crossref] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref] [PubMed]

Quantum Sci. Technol. (1)

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2, 034007 (2017).
[Crossref]

Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B (1)

G. I. Stegeman, “cascading: nonlinear phase shifts,” Quantum Semiclassical Opt. J. Eur. Opt. Soc. Part B 9, 139 (1997).
[Crossref]

science (1)

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” science 332, 555–559 (2011).
[Crossref] [PubMed]

Science. (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science. 288, 635–639 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) An illustration of spectra in primary comb generation and secondary comb generation. (b) A conceptual illustration of the optical comb generation around the fundamental pump light at the 1.5-μm band and around SH light of the pump. While the PPLN-QNWR confines only the 1.5-μm light, the SH light output from the PPLN has comb structure. (c) Our experimental setup for frequency comb generation. DFBL; distributed feedback laser, ECDL; external cavity diode laser, EDFA; erbium-doped fiber amplifier, AL; aspheric lens, HWP; half wave plate, PBS; polarizing beamspliter, DM; dichroic mirror, BS; beamspliter, BPF; bandpass filter, PD; photo detector, DSO; digital sampling oscilloscope, OSA; optical spectrum analyzer, ESA; electrical spectrum analyzer. (d) Observed transmitted spectra with the FSR of 3.5 GHz. Inset shows one of the peaks with the linewidth of 35 MHz. (e) A peak power of the SHG signal (red plots) and the signal of 1.5-μm sideband (blue plots) with respect to the pump power.
Fig. 2
Fig. 2 (a) Power dependence of the frequency comb formation with respect to six different pump powers. (b) Spectra around 1.5 μm for 280-mW pump power. (c) Spectra around the SH light with 280-mW pump power.
Fig. 3
Fig. 3 (a) Rf beat note spectra, (b) Optical spectra, and (c) Its enlarged view, where the laser frequency was on resonant. (d) Rf spectra, (e) Optical spectra, and (f) Its enlarged view, where the laser detuning was slightly shifted from the on resonance.
Fig. 4
Fig. 4 Comb separation controll by using the two pump lights. The pump light at 1540 nm (pump 1) is used for all cases. We changed the wavelength of the second pump light (pump2) from δp = −2 nm, 2.5 nm, 3 nm, 4 nm, 5 nm and 10 nm. The comb separation corresponds to the wavelength difference δp of the two pump lights.