Abstract

We present a new measurement principle to determine the absolute time delay of a waveform from an optical reference plane to an electrical reference plane and vice versa. We demonstrate a method based on this principle with 2 ps uncertainty. This method can be used to perform accurate time delay determinations of optical transceivers used in fiber-optic time-dissemination equipment. As a result the time scales in optical and electrical domain can be related to each other with the same uncertainty. We expect this method will be a new breakthrough in high-accuracy time transfer and absolute calibration of time-transfer equipment.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Delivering 10 Gb/s optical data with picosecond timing uncertainty over 75 km distance

N. Sotiropoulos, C. M. Okonkwo, R. Nuijts, H. de Waardt, and J. C. J. Koelemeij
Opt. Express 21(26) 32643-32654 (2013)

Analog mean-delay method for high-speed fluorescence lifetime measurement

Sucbei Moon, Youngjae Won, and Dug Young Kim
Opt. Express 17(4) 2834-2849 (2009)

Three-dimensional electric-field vector measurement with an electro-optic sensing technique

Wen-Kai Kuo, Yang-Tung Huang, and Sheng-Lung Huang
Opt. Lett. 24(22) 1546-1548 (1999)

References

  • View by:
  • |
  • |
  • |

  1. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
    [Crossref]
  2. I. Prochazka, J. Kodet, and P. Panek, “Note: Electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision,” Rev. Sci. Instr. 83, 116104 (2012).
    [Crossref]
  3. N. Sotiropoulos, C. M. Okonkwo, R. Nuijts, H. de Waardt, and J. C. J. Koelemeij, “Delivering 10 Gb/s optical data with picosecond timing uncertainty over 75 km distance,” Opt. Express 21, 32643 (2013).
    [Crossref]
  4. I. Prochazka, J. Blazej, and J. Kodet, “Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer,” Metrologia 48, L13 (2011).
    [Crossref]
  5. J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).
  6. J. Kodet, P. Pánek, and I. Procházka, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia 53, 18 (2016).
    [Crossref]
  7. T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, and G. Visser, “White rabbit calibration,” URL: https://www.ohwr.org/projects/wr-calibration/wiki . Retrieved: 18-10-2017 22:10.
  8. G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process. 41, 525 (1993).
    [Crossref]
  9. L. Zhang and X. Wu, “On the application of cross correlation function to subsample discrete time delay estimation,” Digit. Signal Process. 16, 682 (2006).
    [Crossref]
  10. T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.
  11. U. T. Schwarz and M. Maier, “Frequency dependence of phonon-polariton damping in lithium niobate,” Phys. Rev. B 53, 5074 (1996).
    [Crossref]
  12. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
    [Crossref]
  13. E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
    [Crossref]
  14. R. Moddemeijer, “On the determination of the position of extrema of sampled correlators,” IEEE Trans. Signal Process. 39, 216 (1991).
    [Crossref]

2017 (1)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

2016 (1)

J. Kodet, P. Pánek, and I. Procházka, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia 53, 18 (2016).
[Crossref]

2015 (1)

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

2013 (1)

2012 (1)

I. Prochazka, J. Kodet, and P. Panek, “Note: Electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision,” Rev. Sci. Instr. 83, 116104 (2012).
[Crossref]

2011 (1)

I. Prochazka, J. Blazej, and J. Kodet, “Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer,” Metrologia 48, L13 (2011).
[Crossref]

2006 (1)

L. Zhang and X. Wu, “On the application of cross correlation function to subsample discrete time delay estimation,” Digit. Signal Process. 16, 682 (2006).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

1996 (1)

U. T. Schwarz and M. Maier, “Frequency dependence of phonon-polariton damping in lithium niobate,” Phys. Rev. B 53, 5074 (1996).
[Crossref]

1993 (1)

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process. 41, 525 (1993).
[Crossref]

1991 (1)

R. Moddemeijer, “On the determination of the position of extrema of sampled correlators,” IEEE Trans. Signal Process. 39, 216 (1991).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Alvarez, P.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Bär, R.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Blazej, J.

I. Prochazka, J. Blazej, and J. Kodet, “Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer,” Metrologia 48, L13 (2011).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Boven, P.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Cattin, M.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

de Waardt, H.

Dedic, J.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Diaz, J.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Dierikx, E. F.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Fleck, T.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Gaderer, G.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Garcia Cota, E.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Hajdara, I.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Hebling, J.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

Holzwarth, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Jacovitti, G.

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process. 41, 525 (1993).
[Crossref]

Jansweijer, P. P. M.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Kodet, J.

J. Kodet, P. Pánek, and I. Procházka, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia 53, 18 (2016).
[Crossref]

I. Prochazka, J. Kodet, and P. Panek, “Note: Electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision,” Rev. Sci. Instr. 83, 116104 (2012).
[Crossref]

I. Prochazka, J. Blazej, and J. Kodet, “Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer,” Metrologia 48, L13 (2011).
[Crossref]

Koelemeij, J. C. J.

N. Sotiropoulos, C. M. Okonkwo, R. Nuijts, H. de Waardt, and J. C. J. Koelemeij, “Delivering 10 Gb/s optical data with picosecond timing uncertainty over 75 km distance,” Opt. Express 21, 32643 (2013).
[Crossref]

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Kreider, M.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Le Coq, Y.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Lewis, J.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Loschmidt, P.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Maier, M.

U. T. Schwarz and M. Maier, “Frequency dependence of phonon-polariton damping in lithium niobate,” Phys. Rev. B 53, 5074 (1996).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Moddemeijer, R.

R. Moddemeijer, “On the determination of the position of extrema of sampled correlators,” IEEE Trans. Signal Process. 39, 216 (1991).
[Crossref]

Moreira, P.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Nuijts, R.

Okonkwo, C. M.

Pálfalvi, L.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

Panek, P.

I. Prochazka, J. Kodet, and P. Panek, “Note: Electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision,” Rev. Sci. Instr. 83, 116104 (2012).
[Crossref]

Pánek, P.

J. Kodet, P. Pánek, and I. Procházka, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia 53, 18 (2016).
[Crossref]

Peek, H. Z.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Pinkert, T. J.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Prados, C.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Prochazka, I.

I. Prochazka, J. Kodet, and P. Panek, “Note: Electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision,” Rev. Sci. Instr. 83, 116104 (2012).
[Crossref]

I. Prochazka, J. Blazej, and J. Kodet, “Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer,” Metrologia 48, L13 (2011).
[Crossref]

Procházka, I.

J. Kodet, P. Pánek, and I. Procházka, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia 53, 18 (2016).
[Crossref]

Rauch, S.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Ros, E.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Scarano, G.

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process. 41, 525 (1993).
[Crossref]

Schwarz, U. T.

U. T. Schwarz and M. Maier, “Frequency dependence of phonon-polariton damping in lithium niobate,” Phys. Rev. B 53, 5074 (1996).
[Crossref]

Serrano, J.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Smets, R.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Sotiropoulos, N.

Szaller, Z.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

Szomoru, A.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Tremblin, P.-A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Unferdorben, M.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

Wlostowski, T.

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Wu, X.

L. Zhang and X. Wu, “On the application of cross correlation function to subsample discrete time delay estimation,” Digit. Signal Process. 16, 682 (2006).
[Crossref]

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Y.-Yan, A.

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

Zhang, L.

L. Zhang and X. Wu, “On the application of cross correlation function to subsample discrete time delay estimation,” Digit. Signal Process. 16, 682 (2006).
[Crossref]

Digit. Signal Process. (1)

L. Zhang and X. Wu, “On the application of cross correlation function to subsample discrete time delay estimation,” Digit. Signal Process. 16, 682 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Y.-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
[Crossref]

IEEE Trans. Signal Process. (2)

R. Moddemeijer, “On the determination of the position of extrema of sampled correlators,” IEEE Trans. Signal Process. 39, 216 (1991).
[Crossref]

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process. 41, 525 (1993).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Milli. Terahz. Waves 36, 1203 (2015).
[Crossref]

Metrologia (2)

J. Kodet, P. Pánek, and I. Procházka, “Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability,” Metrologia 53, 18 (2016).
[Crossref]

I. Prochazka, J. Blazej, and J. Kodet, “Measurement of the optical to electrical detection delay in the detector for ground-to-space laser time transfer,” Metrologia 48, L13 (2011).
[Crossref]

Nat. Phot. (1)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Phot. 11, 44 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

U. T. Schwarz and M. Maier, “Frequency dependence of phonon-polariton damping in lithium niobate,” Phys. Rev. B 53, 5074 (1996).
[Crossref]

Rev. Sci. Instr. (1)

I. Prochazka, J. Kodet, and P. Panek, “Note: Electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision,” Rev. Sci. Instr. 83, 116104 (2012).
[Crossref]

Other (3)

J. Serrano, P. Alvarez, M. Cattin, E. Garcia Cota, J. Lewis, P. Moreira, T. Wlostowski, G. Gaderer, P. Loschmidt, J. Dedič, R. Bär, T. Fleck, M. Kreider, C. Prados, and S. Rauch, “The White Rabbit project,” in “Proceedings of ICALEPCS2009, Kobe, Japan,” 93 (2009).

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, and G. Visser, “White rabbit calibration,” URL: https://www.ohwr.org/projects/wr-calibration/wiki . Retrieved: 18-10-2017 22:10.

T. J. Pinkert, H. Z. Peek, P. P. M. Jansweijer, P. Boven, A. Szomoru, E. F. Dierikx, R. Smets, E. Ros, J. Diaz, and J. C. J. Koelemeij, “High-accuracy long-haul time and frequency transfer using white rabbit,” presented at the 9th White Rabbit Workshop, Amsterdam, The Netherlands, 14–16 March 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Proposed experimental set-up for the determination of the optical to electrical delay ΔOE. The reference planes for the time delay determination are indicated by the blue dashed lines.
Fig. 2
Fig. 2 Electrical delay chain reference measurement A (= electrical reference delay plus the delay of an F–F coupling device). Measurement B is used to determine the MZM EE delay D1 using reference measurement A.
Fig. 3
Fig. 3 Optical delay chain reference measurement C (= optical reference delay). Measurement D determines OO delay D2 using reference measurement of C.
Fig. 4
Fig. 4 EO delay D3 is determined by measurement E (i.e. MZM delays plus ΔOE photo diode). Delay D4 (measurement F) is determined by exchange of the MZM ports such that the electrical signal and light travel in the reverse direction through the MZM.
Fig. 5
Fig. 5 Symbols used throughout the figures.
Fig. 6
Fig. 6 Measurement set-up with labels to pointing to the various components (measurement F is shown).
Fig. 7
Fig. 7 auxiliary measurement to determine delay Δe.
Fig. 8
Fig. 8 mechanical accessory tool (dimensions in mm).
Fig. 9
Fig. 9 set-up to measure delay influence due to electrical reflection caused by MZM impedance mismatch.

Tables (2)

Tables Icon

Table 1 Type B (systematic) measurement uncertainties with standard deviation uj.

Tables Icon

Table 2 Measurement A to F and Δf, including Type A (statistical) uncertainties, of a single measurement series with standard error si, and degrees of freedom vi (here, number of measurements-1).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

D 1 = Δ E A + Δ E B ,
D 2 = Δ O A + Δ O B ,
D 3 = Δ E A + Δ O B + Δ E O + Δ O E ,
D 4 = Δ E B + Δ O A + Δ E O + Δ O E ,
Δ E O + Δ O E = D 3 + D 4 D 1 D 2 2 .
D 1 = B ( A Δ f ) ,
D 2 = D C ,
D 3 = E ( A Δ f ) ,
D 4 = F ( A Δ f ) .
Δ O E = A B + C D + E + F + Δ f 2 Δ E O .
Δ f = τ f + Δ e x 2 ,
Δ m = τ m + Δ e x 2 ,
Δ e x = Δ e τ m τ f ,
τ f = l f c ,
τ m = l m c .

Metrics