Abstract

A preliminary usefulness metric is defined. The metric is intended to characterize the energy efficiency of light sources in a more comprehensive way than the luminous efficacy of a source by taking selected spectral aspects of human centric lighting into consideration. The presented version of the metric is a combination of well-established measures of color quality, brightness and the circadian effect derived from the spectral power distribution of the light source. The metric includes a limited application dependence: it yields different values for interior and exterior applications, static and dynamic as well as relaxing and activating light source spectra. Light source categories (A-G) with preliminary category limits were also computed in the two-dimensional diagram associated with the metric. The metric should be considered as a basis for further discussions and not as a final solution.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of solid-state lamps for photobiologically friendly mesopic lighting

Artūras Žukauskas, Rimantas Vaicekauskas, and Pranciškus Vitta
Appl. Opt. 51(35) 8423-8432 (2012)

Multi-function indoor light sources based on light-emitting diodes–a solution for healthy lighting

Tingzhu Wu, Yue Lin, Honghui Zhu, Ziquan Guo, Lili Zheng, Yijun Lu, Tien-Mo Shih, and Zhong Chen
Opt. Express 24(21) 24401-24412 (2016)

Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting

Qi Dai, Qifeng Shan, Hien Lam, Luoxi Hao, Yi Lin, and Zhe Cui
Opt. Express 24(18) 20049-20059 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Boyce, “Exploring human-centric lighting,” Light. Res. Technol. 48(2), 101 (2016).
    [Crossref]
  2. P. Bodrogi, Q. T. Vinh, and T. Q. Khanh, “Opinion: The usefulness of light sources in human centric lighting,” Light. Res. Technol. 49(3), 292 (2017).
    [Crossref]
  3. T. Q. Khanh, Q. T. Vinh, and P. Bodrogi, “Visual performance, emotional and non-visual effects: the fundamentals of future lighting technology,” in BioWi 2017 (2017).
  4. P. Bodrogi and T. Q. Khanh, “Human centric lighting,” in CIE Midterm Meeting 2017 (2017).
  5. M. S. Rea and A. Bierman, “A new rationale for setting light source luminous efficacy requirements,” Lighting Res. Technol., in press.
  6. P. Dehoff, B. Tralau B, Lighting Quality: a Process Instead of a Single Parameter (LiTG, 2017).
  7. M. Rea, “The lumen seen in a new light: Making distinctions between light, lighting and neuroscience,” Light. Res. Technol. 47(3), 259–280 (2015).
    [Crossref]
  8. T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.
  9. S. E. Fleischer, The Psychological Effect of Changeable Aritificial Lighting Situations on Humans (ETH Zurich Research Collection, 2001).
  10. M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
    [Crossref]
  11. Y. A. W. de Kort and K. C. H. J. Smolders, “Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings,” Light. Res. Technol. 42(3), 345–360 (2010).
    [Crossref]
  12. P. Boyce, “Editorial: The paradox of photometry,” Light. Res. Technol. 47(7), 767 (2015).
    [Crossref]
  13. CIE (Commission Internationale de l’Éclairage), Method of Measuring and Specifying Color Rendering Properties of Light Sources, CIE Publication 13.3–1995 (CIE, 1995).
  14. S. A. Fotios and G. J. Levermore, “Chromatic effect on apparent brightness in interior spaces, II: SWS lumens model,” Light. Res. Technol. 30(3), 103–106 (1998).
    [Crossref]
  15. CIE (Commission Internationale de l’Éclairage), Recommended System for Mesopic Photometry based on Visual Performance, CIE Publication 191:2010 (CIE, 2010).
  16. S. M. Berman, The Reengineering of Lighting Photometry (Lawrence Berkeley National Laboratory, 1995).
  17. CIE (Commission Internationale de l’Éclairage), CIE Supplementary System of Photometry, CIE Publication 200:2011 (CIE, 2011).
  18. CIE (Commission Internationale de l’Éclairage), CIE 2017 Color Fidelity Index for accurate scientific use, CIE Publication 224:2017 (CIE, 2017).
  19. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [Crossref]
  20. DIN, DIN SPEC 5031–100:2015–08, Optical radiation physics and illuminating engineering - Part 100: Non-visual effects of ocular light on human beings – Quantities, symbols and action spectra (Beuth Verlag, 2015).
  21. M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
    [Crossref]
  22. S. A. Fotios and C. Cheal, “Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness,” Light. Res. Technol. 43(2), 143–157 (2011).
    [Crossref]
  23. S. Fotios, C. Cheal, and P. R. Boyce, “Light source spectrum, brightness perception and visual performance in pedestrian environments: a review,” Light. Res. Technol. 37(4), 271–291 (2005).
    [Crossref]
  24. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15(2), 161–171 (1975).
    [Crossref] [PubMed]
  25. European Standard CSN EN 13201–2:2015, Road lighting - Part 2: Performance requirements (CSN EN, 2015).
  26. R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
    [Crossref] [PubMed]
  27. M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  28. P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
    [Crossref]
  29. P. Bodrogi and T. Q. Khanh, “Visual clarity and brightness in indoor and outdoor lighting: experiments and modelling,” in Proceedings of the CIE Midterm Meeting 2017 (CIE, 2017).
  30. M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
    [Crossref] [PubMed]
  31. M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
    [Crossref] [PubMed]
  32. M. G. Figueiro, R. Nagare, and L. L. A. Price, “Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness,” Light. Res. Technol. 50(1), 38–62 (2018).
    [Crossref]
  33. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [Crossref] [PubMed]

2018 (1)

M. G. Figueiro, R. Nagare, and L. L. A. Price, “Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness,” Light. Res. Technol. 50(1), 38–62 (2018).
[Crossref]

2017 (2)

P. Bodrogi, Q. T. Vinh, and T. Q. Khanh, “Opinion: The usefulness of light sources in human centric lighting,” Light. Res. Technol. 49(3), 292 (2017).
[Crossref]

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

2016 (1)

P. Boyce, “Exploring human-centric lighting,” Light. Res. Technol. 48(2), 101 (2016).
[Crossref]

2015 (3)

P. Boyce, “Editorial: The paradox of photometry,” Light. Res. Technol. 47(7), 767 (2015).
[Crossref]

M. Rea, “The lumen seen in a new light: Making distinctions between light, lighting and neuroscience,” Light. Res. Technol. 47(3), 259–280 (2015).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

2014 (2)

M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
[Crossref]

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

2013 (1)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

2012 (1)

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

2011 (1)

S. A. Fotios and C. Cheal, “Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness,” Light. Res. Technol. 43(2), 143–157 (2011).
[Crossref]

2010 (3)

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

Y. A. W. de Kort and K. C. H. J. Smolders, “Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings,” Light. Res. Technol. 42(3), 345–360 (2010).
[Crossref]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

2005 (2)

M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
[Crossref] [PubMed]

S. Fotios, C. Cheal, and P. R. Boyce, “Light source spectrum, brightness perception and visual performance in pedestrian environments: a review,” Light. Res. Technol. 37(4), 271–291 (2005).
[Crossref]

1998 (1)

S. A. Fotios and G. J. Levermore, “Chromatic effect on apparent brightness in interior spaces, II: SWS lumens model,” Light. Res. Technol. 30(3), 103–106 (1998).
[Crossref]

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15(2), 161–171 (1975).
[Crossref] [PubMed]

Anh, T. T.

T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.

Berson, D. M.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Bierman, A.

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
[Crossref] [PubMed]

M. S. Rea and A. Bierman, “A new rationale for setting light source luminous efficacy requirements,” Lighting Res. Technol., in press.

Bodrogi, P.

P. Bodrogi, Q. T. Vinh, and T. Q. Khanh, “Opinion: The usefulness of light sources in human centric lighting,” Light. Res. Technol. 49(3), 292 (2017).
[Crossref]

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

P. Bodrogi and T. Q. Khanh, “Visual clarity and brightness in indoor and outdoor lighting: experiments and modelling,” in Proceedings of the CIE Midterm Meeting 2017 (CIE, 2017).

T. Q. Khanh, Q. T. Vinh, and P. Bodrogi, “Visual performance, emotional and non-visual effects: the fundamentals of future lighting technology,” in BioWi 2017 (2017).

P. Bodrogi and T. Q. Khanh, “Human centric lighting,” in CIE Midterm Meeting 2017 (2017).

T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.

Boyce, P.

P. Boyce, “Exploring human-centric lighting,” Light. Res. Technol. 48(2), 101 (2016).
[Crossref]

P. Boyce, “Editorial: The paradox of photometry,” Light. Res. Technol. 47(7), 767 (2015).
[Crossref]

Boyce, P. R.

S. Fotios, C. Cheal, and P. R. Boyce, “Light source spectrum, brightness perception and visual performance in pedestrian environments: a review,” Light. Res. Technol. 37(4), 271–291 (2005).
[Crossref]

Brainard, G. C.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Brown, T. M.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Bullough, J. D.

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
[Crossref] [PubMed]

Canazei, M.

M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
[Crossref]

Cheal, C.

S. A. Fotios and C. Cheal, “Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness,” Light. Res. Technol. 43(2), 143–157 (2011).
[Crossref]

S. Fotios, C. Cheal, and P. R. Boyce, “Light source spectrum, brightness perception and visual performance in pedestrian environments: a review,” Light. Res. Technol. 37(4), 271–291 (2005).
[Crossref]

Cooper, H. M.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Czeisler, C. A.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

David, A.

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

de Kort, Y. A. W.

Y. A. W. de Kort and K. C. H. J. Smolders, “Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings,” Light. Res. Technol. 42(3), 345–360 (2010).
[Crossref]

Dehoff, P.

M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
[Crossref]

Figueiro, M. G.

M. G. Figueiro, R. Nagare, and L. L. A. Price, “Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness,” Light. Res. Technol. 50(1), 38–62 (2018).
[Crossref]

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
[Crossref] [PubMed]

Fini, P. T.

Fotios, S.

S. Fotios, C. Cheal, and P. R. Boyce, “Light source spectrum, brightness perception and visual performance in pedestrian environments: a review,” Light. Res. Technol. 37(4), 271–291 (2005).
[Crossref]

Fotios, S. A.

S. A. Fotios and C. Cheal, “Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness,” Light. Res. Technol. 43(2), 143–157 (2011).
[Crossref]

S. A. Fotios and G. J. Levermore, “Chromatic effect on apparent brightness in interior spaces, II: SWS lumens model,” Light. Res. Technol. 30(3), 103–106 (1998).
[Crossref]

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Gamlin, P. D.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Guo, X.

T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.

Hamner, R.

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

Houser, K. W.

Khanh, T. Q.

P. Bodrogi, Q. T. Vinh, and T. Q. Khanh, “Opinion: The usefulness of light sources in human centric lighting,” Light. Res. Technol. 49(3), 292 (2017).
[Crossref]

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

P. Bodrogi and T. Q. Khanh, “Visual clarity and brightness in indoor and outdoor lighting: experiments and modelling,” in Proceedings of the CIE Midterm Meeting 2017 (CIE, 2017).

T. Q. Khanh, Q. T. Vinh, and P. Bodrogi, “Visual performance, emotional and non-visual effects: the fundamentals of future lighting technology,” in BioWi 2017 (2017).

P. Bodrogi and T. Q. Khanh, “Human centric lighting,” in CIE Midterm Meeting 2017 (2017).

T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.

Levermore, G. J.

S. A. Fotios and G. J. Levermore, “Chromatic effect on apparent brightness in interior spaces, II: SWS lumens model,” Light. Res. Technol. 30(3), 103–106 (1998).
[Crossref]

Lin, Y.

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

Lockley, S. W.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Lucas, R. J.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Nagare, R.

M. G. Figueiro, R. Nagare, and L. L. A. Price, “Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness,” Light. Res. Technol. 50(1), 38–62 (2018).
[Crossref]

O’Hagan, J. B.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Ohno, Y.

Peirson, S. N.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Pohl, W.

M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
[Crossref]

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15(2), 161–171 (1975).
[Crossref] [PubMed]

Price, L. L. A.

M. G. Figueiro, R. Nagare, and L. L. A. Price, “Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness,” Light. Res. Technol. 50(1), 38–62 (2018).
[Crossref]

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Provencio, I.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Rea, M.

M. Rea, “The lumen seen in a new light: Making distinctions between light, lighting and neuroscience,” Light. Res. Technol. 47(3), 259–280 (2015).
[Crossref]

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
[Crossref] [PubMed]

M. S. Rea and A. Bierman, “A new rationale for setting light source luminous efficacy requirements,” Lighting Res. Technol., in press.

Royer, M. P.

Skene, D. J.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Smet, K. A.

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15(2), 161–171 (1975).
[Crossref] [PubMed]

Smolders, K. C. H. J.

Y. A. W. de Kort and K. C. H. J. Smolders, “Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings,” Light. Res. Technol. 42(3), 345–360 (2010).
[Crossref]

Staggla, S.

M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
[Crossref]

Stojanovic, D.

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

Vinh, Q. T.

P. Bodrogi, Q. T. Vinh, and T. Q. Khanh, “Opinion: The usefulness of light sources in human centric lighting,” Light. Res. Technol. 49(3), 292 (2017).
[Crossref]

T. Q. Khanh, Q. T. Vinh, and P. Bodrogi, “Visual performance, emotional and non-visual effects: the fundamentals of future lighting technology,” in BioWi 2017 (2017).

T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.

Wei, M.

Whitehead, L.

Xiao, X.

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

Brain Res. Brain Res. Rev. (1)

M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Res. Brain Res. Rev. 50(2), 213–228 (2005).
[Crossref] [PubMed]

Color Res. Appl. (1)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

J. Circadian Rhythms (1)

M. S. Rea, M. G. Figueiro, A. Bierman, and J. D. Bullough, “Circadian light,” J. Circadian Rhythms 8(1), 2 (2010).
[Crossref] [PubMed]

Light. Res. Technol. (12)

P. Bodrogi, Y. Lin, X. Xiao, D. Stojanovic, and T. Q. Khanh, “Intercultural observer preference for perceived illumination chromaticity for different colored object scenes,” Light. Res. Technol. 49(3), 305–315 (2017).
[Crossref]

M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, “Modelling the spectral sensitivity of the human circadian system,” Light. Res. Technol. 44(4), 386–396 (2012).
[Crossref]

S. A. Fotios and C. Cheal, “Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness,” Light. Res. Technol. 43(2), 143–157 (2011).
[Crossref]

S. Fotios, C. Cheal, and P. R. Boyce, “Light source spectrum, brightness perception and visual performance in pedestrian environments: a review,” Light. Res. Technol. 37(4), 271–291 (2005).
[Crossref]

M. G. Figueiro, R. Nagare, and L. L. A. Price, “Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness,” Light. Res. Technol. 50(1), 38–62 (2018).
[Crossref]

P. Boyce, “Exploring human-centric lighting,” Light. Res. Technol. 48(2), 101 (2016).
[Crossref]

P. Bodrogi, Q. T. Vinh, and T. Q. Khanh, “Opinion: The usefulness of light sources in human centric lighting,” Light. Res. Technol. 49(3), 292 (2017).
[Crossref]

M. Canazei, P. Dehoff, S. Staggla, and W. Pohl, “Effects of dynamic ambient lighting on female permanent morning shift workers,” Light. Res. Technol. 46(2), 140–156 (2014).
[Crossref]

Y. A. W. de Kort and K. C. H. J. Smolders, “Effects of dynamic lighting on office workers: First results of a field study with monthly alternating settings,” Light. Res. Technol. 42(3), 345–360 (2010).
[Crossref]

P. Boyce, “Editorial: The paradox of photometry,” Light. Res. Technol. 47(7), 767 (2015).
[Crossref]

S. A. Fotios and G. J. Levermore, “Chromatic effect on apparent brightness in interior spaces, II: SWS lumens model,” Light. Res. Technol. 30(3), 103–106 (1998).
[Crossref]

M. Rea, “The lumen seen in a new light: Making distinctions between light, lighting and neuroscience,” Light. Res. Technol. 47(3), 259–280 (2015).
[Crossref]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Opt. Express (1)

Trends Neurosci. (1)

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. A. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Vision Res. (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15(2), 161–171 (1975).
[Crossref] [PubMed]

Other (14)

European Standard CSN EN 13201–2:2015, Road lighting - Part 2: Performance requirements (CSN EN, 2015).

P. Bodrogi and T. Q. Khanh, “Visual clarity and brightness in indoor and outdoor lighting: experiments and modelling,” in Proceedings of the CIE Midterm Meeting 2017 (CIE, 2017).

DIN, DIN SPEC 5031–100:2015–08, Optical radiation physics and illuminating engineering - Part 100: Non-visual effects of ocular light on human beings – Quantities, symbols and action spectra (Beuth Verlag, 2015).

T. Q. Khanh, P. Bodrogi, Q. T. Vinh, X. Guo, and T. T. Anh, “Color preference, naturalness, vividness and color quality metrics, Part 4: Experiments with still life arrangements at different correlated color temperatures,” Lighting Res. Technol., in press.

S. E. Fleischer, The Psychological Effect of Changeable Aritificial Lighting Situations on Humans (ETH Zurich Research Collection, 2001).

CIE (Commission Internationale de l’Éclairage), Recommended System for Mesopic Photometry based on Visual Performance, CIE Publication 191:2010 (CIE, 2010).

S. M. Berman, The Reengineering of Lighting Photometry (Lawrence Berkeley National Laboratory, 1995).

CIE (Commission Internationale de l’Éclairage), CIE Supplementary System of Photometry, CIE Publication 200:2011 (CIE, 2011).

CIE (Commission Internationale de l’Éclairage), CIE 2017 Color Fidelity Index for accurate scientific use, CIE Publication 224:2017 (CIE, 2017).

CIE (Commission Internationale de l’Éclairage), Method of Measuring and Specifying Color Rendering Properties of Light Sources, CIE Publication 13.3–1995 (CIE, 1995).

T. Q. Khanh, Q. T. Vinh, and P. Bodrogi, “Visual performance, emotional and non-visual effects: the fundamentals of future lighting technology,” in BioWi 2017 (2017).

P. Bodrogi and T. Q. Khanh, “Human centric lighting,” in CIE Midterm Meeting 2017 (2017).

M. S. Rea and A. Bierman, “A new rationale for setting light source luminous efficacy requirements,” Lighting Res. Technol., in press.

P. Dehoff, B. Tralau B, Lighting Quality: a Process Instead of a Single Parameter (LiTG, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Aspects of human centric lighting (HCL) from the present authors’ point of view (see also Fig. 1 in [8]) and their possible numeric descriptor quantities. For optimum HCL design, a suitable combination of appropriate descriptors is necessary, depending on lighting application and the user’s characteristics as well as their expectations.
Fig. 2
Fig. 2 Four selected relationships between the values of the metrics (listed in the middle column of Table 1) to be used in the UM (usefulness metric) method in case of a sample set of 302 light sources.
Fig. 3
Fig. 3 The values of amel and amel,0 as a function of CCT for the sample set of 302 light sources.
Fig. 4
Fig. 4 The value of C (Eqs. (2-4) as a function of CCT for the sample set of 302 light sources.
Fig. 5
Fig. 5 The descriptor of brightness (Leq/Lv) = (S/V)0.24 and the modification term in the square brackets in Eq. (1) i.e. the quantity [(Leq/Lv) + C] as a function of CCT for the sample set of 302 light sources. Interior lighting with no dynamic lighting is assumed i.e. α = β = 1 in this example.
Fig. 6
Fig. 6 Result of a sample computation of the UM method (the values of UM1 and UM2) for a set of 302 light sources (thankfully obtained from METAS, Switzerland), with the preliminary category limit values listed in Table 3 and with α = 1 (no dynamic lighting) and β = 1 (interior lighting) in this example. Light sources in the UM categories A-G are identified by the symbols in the legend. Black lines represent the category limit values from Table 3.
Fig. 7
Fig. 7 The same 302 light sources with the same category symbols according to the UM method as in Fig. 6 but the ordinate of Fig. 6 was replaced by luminous efficacy of a source (lm/W) values here.
Fig. 8
Fig. 8 Comparison of the two measures of the circadian effect, amel and CS, in case of the sample set of 302 light source data (see Table 4).

Tables (4)

Tables Icon

Table 1 Selected HCL aspects (see Fig. 1) and their descriptors chosen to be included in the present version of the usefulness metric (UM) and some selected alternative descriptors

Tables Icon

Table 2 Pearson’s correlation coefficients (r) between the values of the metrics (listed in the middle column of Table 1) to be used in the UM (usefulness metric) method in case of a sample set of 302 light sources

Tables Icon

Table 3 Preliminary UM category limit values in Fig. 3

Tables Icon

Table 4 Distribution of the 302 light sources according to light source type and UM category (A-G) computed with the preliminary category limit values in Table 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U M 2 =( Φ v / P el )[α( L eq / L v )+βC].
C=0.1( a mel / a mel,0 )1).
C=0.1( a mel,0 / a mel )1).
C=C(Eq.3)[(3800KCCT)/600K]+C(Eq.2)[(CCT3200K)/600K].

Metrics