Abstract

Hetero-epitaxial growth of high quality InP on a complementary metal-oxide-semiconductor (CMOS)-compatible Si platform is compelling for monolithic integration of optoelectronics. It will provide the combined strength of mainstream mature InP-based photonic integrated circuits (PIC) technologies and large-volume, low-cost silicon-based manufacturing foundries. Direct monolithic integration of InP-based laser diodes (LDs) on silicon helps fully exploit the potential of silicon photonics and benefits the application of dense wavelength division multiplexing (DWDM) for telecommunications. Here, we report the first InGaAs/InAlGaAs multi-quantum-well (MQW) lasers directly grown on on-axis V-grooved (001) Si by metalorganic chemical vapor deposition (MOCVD). Lasing near 1.5 μm was achieved for the first time with a threshold current density Jth = 3.3 kA/cm2 under pulsed current injection at room temperature. A high characteristic temperature T0 of 133 K in the range of 20°C–40°C was measured. These results demonstrate the potential of adopting this large-area InP-on-Si substrate for integrating diverse III-V laser diodes, photodetectors, and high-frequency and high-speed transistors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si

Si Zhu, Bei Shi, Qiang Li, Yating Wan, and Kei May Lau
Opt. Express 25(25) 31281-31293 (2017)

Quantum dot lasers for silicon photonics [Invited]

Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, and John E. Bowers
Photon. Res. 3(5) B1-B9 (2015)

Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  2. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
    [Crossref] [PubMed]
  3. M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
    [Crossref]
  4. D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
    [Crossref]
  5. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref] [PubMed]
  6. S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
    [Crossref] [PubMed]
  7. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
    [Crossref]
  8. J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on Silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
    [Crossref]
  9. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref]
  10. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  11. S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
    [Crossref]
  12. M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
    [Crossref]
  13. R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M. C. Amann, and G. Roelkens, “2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24(18), 21081–21089 (2016).
    [Crossref] [PubMed]
  14. M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
    [Crossref]
  15. L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
    [Crossref]
  16. H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
    [Crossref]
  17. S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
    [Crossref] [PubMed]
  18. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
    [Crossref]
  19. Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
    [Crossref]
  20. Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
    [Crossref]
  21. Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon,” J. Appl. Phys. 120(24), 245701 (2016).
    [Crossref]
  22. B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
    [Crossref]
  23. Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
    [Crossref]
  24. S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
    [Crossref]
  25. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
    [Crossref]
  26. A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
    [Crossref]

2018 (1)

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

2017 (8)

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
[Crossref] [PubMed]

2016 (3)

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M. C. Amann, and G. Roelkens, “2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24(18), 21081–21089 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon,” J. Appl. Phys. 120(24), 245701 (2016).
[Crossref]

2015 (2)

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

2014 (5)

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2007 (1)

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on Silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

2003 (1)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

1993 (1)

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

1991 (2)

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

1988 (1)

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Acher, O.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Amann, M. C.

Baets, R.

Baron, T.

Baten, M. Z.

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

Bhat, R.

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

Bhattacharya, P.

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on Silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

Bhowmick, S.

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

Blondeau, R.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Boehm, G.

Bowers, J. E.

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Brillouet, F.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Cabinian, B. C.

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

Callahan, P. G.

C-Fan, J. C.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Chen, S.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Cheng, H.

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

Defour, M.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

DePuydt, J. M.

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

Echlin, M. P.

Elliott, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Fitzgerald, E. A.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Frost, T.

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

Gossard, A. C.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Groenert, M. E.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Guha, S.

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

Haase, M. A.

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

Han, Y.

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon,” J. Appl. Phys. 120(24), 245701 (2016).
[Crossref]

Hill, R.

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Hu, E. L.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Huang, X.

Itoh, Y.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Julian, N.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Junesand, C.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Jung, D.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Kasukawa, A.

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

Kataria, H.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Kennedy, M. J.

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Klamkin, J.

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

Koza, M. A.

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

Lau, K. M.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
[Crossref] [PubMed]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon,” J. Appl. Phys. 120(24), 245701 (2016).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Lee, H.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Lee, M.

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Lee, M. L.

Lee, T. P.

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

Leitz, C. W.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Li, Q.

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
[Crossref] [PubMed]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon,” J. Appl. Phys. 120(24), 245701 (2016).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liao, M.

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, A. Y.

Liu, H.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Lourdudoss, S.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Martin, M.

Masuda, T.

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Maurel, P.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Megalini, L.

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

Metaferia, W.

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Mi, Z.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on Silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

Mori, H.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Muneeb, M.

Ng, K. W.

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Norman, J.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Oakley, D. C.

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

Omnes, F.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Ooi, B. S.

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

Peters, J.

Pitera, A. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Pollock, T. M.

Qiu, J.

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

Ram, R. J.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Razeghi, M.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Roelkens, G.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sakai, Y.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Salerno, J.

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

Seeds, A.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Selvidge, J.

Shang, C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Shi, B.

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
[Crossref] [PubMed]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smowton, P.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Song, Y.

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Sprengel, S.

Sugo, M.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Tachikawa, M.

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Tang, C. W.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Tang, M.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Vert, A.

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

Wan, Y.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
[Crossref] [PubMed]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

Wang, R.

Wu, J.

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Yang, J.

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on Silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

Yang, V.

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Zah, C. E.

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

Zhao, H.

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

Zhu, S.

S. Zhu, B. Shi, Q. Li, Y. Wan, and K. M. Lau, “Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si,” Opt. Express 25(25), 31281–31293 (2017).
[Crossref] [PubMed]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Zou, X.

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

ACS Photonics (1)

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on Silicon,” ACS Photonics 4(2), 204–210 (2017).
[Crossref]

Appl. Phys. Lett. (8)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, and J. Salerno, “First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate,” Appl. Phys. Lett. 53(24), 2389–2390 (1988).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110(12), 121109 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111(21), 212101 (2017).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

S. Guha, J. M. DePuydt, M. A. Haase, J. Qiu, and H. Cheng, “Degradation of II-VI based blue-green light emitters,” Appl. Phys. Lett. 63(23), 3107–3109 (1993).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5 μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition,” Appl. Phys. Lett. 59(20), 2486–2488 (1991).
[Crossref]

Electron. Lett. (1)

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya, “High performance InAs/In0.53Ga0.23Al0.24As/InP quantum dot 1.55 μm tunnel injection laser,” IEEE J. Quantum Electron. 50(1), 7–14 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Kataria, W. Metaferia, C. Junesand, C. Zhang, N. Julian, J. E. Bowers, and S. Lourdudoss, “Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 380–386 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photonics Technol. Lett. 27(7), 748–751 (2015).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on Silicon with multiple-layer quantum-dot dislocation filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

J. Appl. Phys. (2)

M. E. Groenert, C. W. Leitz, A. J. Pitera, V. Yang, H. Lee, R. J. Ram, and E. A. Fitzgerald, “Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers,” J. Appl. Phys. 93(1), 362–367 (2003).
[Crossref]

Y. Han, Q. Li, and K. M. Lau, “Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon,” J. Appl. Phys. 120(24), 245701 (2016).
[Crossref]

J. Cryst. Growth (1)

Q. Li, K. W. Ng, C. W. Tang, K. M. Lau, R. Hill, and A. Vert, “Defect reduction in epitaxial InP on nanostructured Si (001) substrates with position-controlled seed arrays,” J. Cryst. Growth 405, 81–86 (2014).
[Crossref]

J. Electron. Mater. (1)

L. Megalini, B. C. Cabinian, H. Zhao, D. C. Oakley, J. E. Bowers, and J. Klamkin, “Large-area direct hetero-epitaxial growth of 1550-nm InGaAsP multi-quantum-well structures on patterned exact-oriented (001) Silicon substrates by metal organic chemical vapor deposition,” J. Electron. Mater. 47(2), 982–987 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30(Part 1, No. 12B), 3876–3878 (1991).
[Crossref]

Nat. Photonics (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic architecture of InGaAs/InAlGaAs MQW LD directly grown on on-axis (001) Si. The IoVS template contains a 0.4 μm coalesced InP thin film out of highly ordered InP nanowire arrays grown on V-grooved Si substrates, a single 80 nm InGaAs interlayer for dislocation filtering and an 1.1 μm Si-doped n-InP for n-metal contact. The laser epi-structures consist of a 65 nm In0.52Ga0.48As Zn-doped p-contact layer, an 1 μm p-InP upper cladding laser, seven pairs of 8 nm undoped In0.54Ga0.46As quantum well and 23 nm In0.53Al0.2Ga0.27As barrier sandwiched by two 77 nm In0.525Al0.3Ga0.175As waveguide layers, a 630 nm n-InP lower cladding and an 120 nm n-InP contact layer.
Fig. 2
Fig. 2 (a) Cross-sectional SEM of the as-fabricated FP laser; (b) Cross-sectional TEM of the complete IoVS template; (c) Zoomed-in image of the inserted InGaAs interlayer, indicating the dislocation filtering effects. (d) High resolution TEM of the V-grooved diamond pocket structure. Most of the stacking faults were trapped in the 10-nm-thick GaAs wetting layer inside the V-grooved Si pockets. (e) AFM image of 10 × 10 μm2 area on the IoVS template, showing a smooth surface with the RMS value of 3.31 nm; (f) The InP (004) omega-rocking curve showing a FWHM value of 388 arcsec; (g) Plan-view TEM image.
Fig. 3
Fig. 3 (a)(b) LIV characteristics for a 20 μm × 0.5 mm laser on silicon measured at 20 °C; (c) Emission spectra at various injection current. Emission intensities below the threshold are zoomed-in to better reveal the electroluminescence profile; (d) Enlarged emission spectrum at 350 mA current injection, showing FP oscillations in the cavity with a FSR = 0.62 nm; (e) Threshold current and threshold current density as a function of laser cavity width with a fixed cavity length of 0.5 mm on (001) Si and InP substrates.
Fig. 4
Fig. 4 Internal parameters (internal quantum efficiency η i , internal loss α i , modal gain Γ g 0 and transparency current density J tr ) extracted from length-dependent laser LI measurements. Inverse differential quantum efficiency against cavity length of (a) 2 μm wide LD on InP and (b) 20 μm wide LD on Si. Threshold current density of (c) 2 μm wide LD on InP and (d) 20 μm wide LD on Si as a function of reciprocal cavity length.
Fig. 5
Fig. 5 Measured LI curves of a 10 μm × 0.5 mm laser on silicon as a function of the heat sink temperature.
Fig. 6
Fig. 6 Threshold current as a function of heat sink temperature of a 10 μm × 0.5 mm laser on (a) (001) Si and (b) InP. The characteristic temperature T0 was extrapolated to be 133.3 K in the range of 20 °C to 40 °C and 46.3 K in the range of 40 °C to 60 °C for device on Si, and 174 K in 20°C - 60°C, 51.5 K in 60 °C - 75 °C and 15.1 K in 75 °C −85 °C for the device on InP.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η d = q hν d P 0 dI ,
1 η d = L ·  α i η i  · ln( 1 R ) + 1 η i ,
g th =  g 0 ·ln( J th J tr ),
Γ g th = α i + α m ,
α m = 1 L ln( 1 R ) ,
J th = J tr · e α i + 1 L ln( 1 R ) Γ g 0 ,
I th   qVB N tr 2 η i e 2( α i + α m )/Γ g 0 ,

Metrics