Abstract

A novel configuration for realizing a polarization-insensitive optical switch on silicon-on-insulator of 340nm-thick top-silicon layer is demonstrated, using submicron sized waveguides. The device is based on the Mach-Zehnder interferometer structure. By carefully designing the 3dB couplers and the delay-line waveguides in the device, it is possible to achieve a similar switching behavior for all polarizations. Theoretical analyses indicate that extinction ratios of better than −25dB and insertion losses of better than −0.6dB can be obtained simultaneously for transverse-electric and transverse magnetic polarized modes in the whole C-band. Experimental results also confirm the polarization-insensitive property of the proposed optical switch. Extinction ratios of about −15dB are measured for both polarizations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-insensitive 2 × 2 thermo-optic Mach–Zehnder switch on silicon

Shipeng Wang and Daoxin Dai
Opt. Lett. 43(11) 2531-2534 (2018)

CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform

Ying Huang, Shiyang Zhu, Huijuan Zhang, Tsung-Yang Liow, and Guo-Qiang Lo
Opt. Express 21(10) 12790-12796 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luysseart, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  2. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [Crossref] [PubMed]
  4. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  5. K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, and H. Kawashima, “Non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch integrated with polarization splitter-rotators,” Opt. Express 25(10), 10885–10892 (2017).
    [Crossref] [PubMed]
  6. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
    [Crossref]
  7. D. Dai and S. He, “Optimization of Ultracompact Polarization Insensitive Multimode Interference Couplers Based on Si Nanowire Waveguides,” IEEE Photonics Technol. Lett. 18(19), 2017–2019 (2006).
    [Crossref]
  8. J. Xing, Z. Li, Y. Yu, and J. Yu, “Design of polarization-independent adiabatic splitters fabricated on silicon-on-insulator substrates,” Opt. Express 21(22), 26729–26734 (2013).
    [Crossref] [PubMed]
  9. X. Chen, W. Liu, Y. Zhang, and Y. Shi, “Polarization-insensitive broadband 2 × 2 3 dB power splitter based on silicon-bent directional couplers,” Opt. Lett. 42(19), 3738–3740 (2017).
    [Crossref] [PubMed]
  10. X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
    [Crossref]
  11. S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
    [Crossref]
  12. L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
    [Crossref]
  13. L. Jia, H. Zhou, T.-Y. Liow, J. Song, Y. Huang, X. Tu, X. Luo, C. Li, Q. Fang, M. Yu, and G. Lo, “Analysis of the polarization rotation effect in the inversely tapered spot size converter,” Opt. Express 23(21), 27776–27785 (2015).
    [Crossref] [PubMed]
  14. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
    [Crossref] [PubMed]

2017 (3)

2016 (1)

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

2015 (2)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

L. Jia, H. Zhou, T.-Y. Liow, J. Song, Y. Huang, X. Tu, X. Luo, C. Li, Q. Fang, M. Yu, and G. Lo, “Analysis of the polarization rotation effect in the inversely tapered spot size converter,” Opt. Express 23(21), 27776–27785 (2015).
[Crossref] [PubMed]

2013 (2)

2011 (1)

2010 (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

2008 (1)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

2006 (1)

D. Dai and S. He, “Optimization of Ultracompact Polarization Insensitive Multimode Interference Couplers Based on Si Nanowire Waveguides,” IEEE Photonics Technol. Lett. 18(19), 2017–2019 (2006).
[Crossref]

2005 (1)

Baets, R.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Beckx, S.

Bienstman, P.

Bogaerts, W.

Bowers, J. E.

Chen, J.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

Chen, X.

Dai, D.

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

D. Dai and S. He, “Optimization of Ultracompact Polarization Insensitive Multimode Interference Couplers Based on Si Nanowire Waveguides,” IEEE Photonics Technol. Lett. 18(19), 2017–2019 (2006).
[Crossref]

Deng, X.

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

Ding, Y.

Dumon, P.

Fang, Q.

Fukuchi, K.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

Fukuda, H.

He, S.

D. Dai and S. He, “Optimization of Ultracompact Polarization Insensitive Multimode Interference Couplers Based on Si Nanowire Waveguides,” IEEE Photonics Technol. Lett. 18(19), 2017–2019 (2006).
[Crossref]

Hino, T.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

Huang, Y.

Hvam, J. M.

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Ikeda, K.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Itabashi, S.

Jia, L.

Jiang, H.

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kawashima, H.

Li, C.

Li, X.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

Li, Z.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

J. Xing, Z. Li, Y. Yu, and J. Yu, “Design of polarization-independent adiabatic splitters fabricated on silicon-on-insulator substrates,” Opt. Express 21(22), 26729–26734 (2013).
[Crossref] [PubMed]

Liang, D.

Liow, T.-Y.

Liu, L.

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Liu, W.

Lo, G.

Lu, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

Luo, B.

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

Luo, X.

Luysseart, B.

Nakamura, S.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

Namiki, S.

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Pan, W.

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Shi, Y.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Song, J.

Suzuki, K.

Taillaert, D.

Tajima, A.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

Takeshita, H.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

Tang, Y.

Tanizawa, K.

Tsuchizawa, T.

Tu, X.

Van Campenhout, J.

Van Thourhout, D.

Wang, J.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wiaux, V.

Xing, J.

Yamada, K.

Yan, L.

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

Yanagimachi, S.

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

Yu, J.

Yu, M.

Yu, Y.

Yvind, K.

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[Crossref] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Zhang, Y.

Zhou, H.

Zhou, L.

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

Zou, X.

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Hino, and K. Fukuchi, “Optical Switches Based on Silicon Photonics for ROADM Application,” IEEE J. Sel. Top. Quantum Electron. 22(6), 185–193 (2016).
[Crossref]

IEEE Photonics J. (2)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers,” IEEE Photonics J. 7(1), 7800108 (2015).
[Crossref]

X. Deng, L. Yan, H. Jiang, W. Pan, B. Luo, and X. Zou, “Polarization-Insensitive and Broadband Optical Power Splitter With a Tunable Power Splitting Ratio,” IEEE Photonics J. 9(3), 4501609 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Dai and S. He, “Optimization of Ultracompact Polarization Insensitive Multimode Interference Couplers Based on Si Nanowire Waveguides,” IEEE Photonics Technol. Lett. 18(19), 2017–2019 (2006).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic structure of the present optical switch. (b) MMI structure adopted in the paper for realizing the 3dB coupler. (c) Cross-sectional structure of the delay-line waveguide.
Fig. 2
Fig. 2 (a) Power transmission spectra of the designed MMI at the output ports 3 and 4, when incident from the input port 1. (b) Phase difference for the light at the output ports 3 and 4. (c) Dispersion relations of the fundamental TE and TM modes in the MMI section. Here, the MMI structure is shown in Fig. 1 with win = 750nm, g = 500nm, wmmi = 2.0μm, Lmmi = 15.5μm.
Fig. 3
Fig. 3 (a) neff and dneff/dT values for different waveguide widths wd for fundamental TE and TM modes at 1.55μm wavelength. (b) Dispersion relations of the modes at wd = 380nm.
Fig. 4
Fig. 4 (a) Power transmission from the input port 1 to the output port 4 of MZI switches of different wd when tuning one delay line. Since the phase from the delay-line scales with both ΔT and the length L1, their product is used in the horizontal axis. (b & c) Spectral responses of the designed MZI switch at the output ports 3 and 4 when light is incident from the input port 1. Two driving conditions of L1·ΔT = 0 and 3.65 × 10−3m·K are considered, and wd = 380nm.
Fig. 5
Fig. 5 Microscope pictures of a finished sample.
Fig. 6
Fig. 6 (a) Measured power transmission from the input port 1 to the output ports 3 and 4 of the fabricated MZI switch at different electrical heating powers on one delay line. Values are normalized to the maximum on each curve. The wavelength is 1.55μm. (b & c) Spectral responses at the output ports 3 and 4 when light is incident from the input port 1 at two heating powers. The responses of the grating couplers and the PBSs are normalized out.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ TE (TM) =( n eff TE (TM) +Δ n eff TE (TM) ) k 0 L 1 n eff TE (TM) k 0 L 2 ,
Δ ϕ TE (TM) =Δ n eff TE (TM) k 0 L 1 .

Metrics