Abstract

The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Active metasurface terahertz deflector with phase discontinuities

Xiaoqiang Su, Chunmei Ouyang, Ningning Xu, Wei Cao, Xin Wei, Guofeng Song, Jianqiang Gu, Zhen Tian, John F. O’Hara, Jiaguang Han, and Weili Zhang
Opt. Express 23(21) 27152-27158 (2015)

Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs

Chenyu Li, Chun-Chieh Chang, Qingli Zhou, Cunlin Zhang, and Hou-Tong Chen
Opt. Express 25(21) 25842-25852 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  3. L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
    [Crossref]
  4. L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, “Metasurface quantum-cascade laser with electrically switchable polarization,” Optica 4(4), 468 (2017).
    [Crossref]
  5. Q. Tang, M. Liang, and H. Xin, “Terahertz metasurface for potential live cell sensing application,” in IEEE Antennas and Propagation Society,AP-S International Symposium (Digest) (2013), pp. 2279–2280.
    [Crossref]
  6. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
    [Crossref] [PubMed]
  7. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
    [Crossref] [PubMed]
  8. J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).
  9. L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
    [Crossref]
  10. C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, “Light propagation in a fishnet metamaterial,” Phys. Rev. B 78(15), 155102 (2008).
    [Crossref]
  11. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  12. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  13. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  14. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
    [Crossref]
  15. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  17. C. Kübler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: Generation and field-resolved detection,” Semicond. Sci. Technol. 20(7), S128–S133 (2005).
    [Crossref]
  18. L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Camb. Philos. Soc. 23(5), 542–548 (1927).
    [Crossref]
  19. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (2005).
  21. M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
    [Crossref]
  22. P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
    [Crossref]
  23. J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
    [Crossref]
  24. M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
    [Crossref]
  25. L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
    [Crossref] [PubMed]
  26. K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
    [Crossref] [PubMed]
  27. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18(3), 313 (2001).
    [Crossref]
  28. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

2017 (2)

L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, “Metasurface quantum-cascade laser with electrically switchable polarization,” Optica 4(4), 468 (2017).
[Crossref]

M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
[Crossref]

2016 (2)

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

2015 (3)

P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
[Crossref] [PubMed]

2014 (1)

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

2012 (2)

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

2011 (2)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

2010 (1)

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

2009 (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

2006 (1)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

2005 (1)

C. Kübler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: Generation and field-resolved detection,” Semicond. Sci. Technol. 20(7), S128–S133 (2005).
[Crossref]

2002 (3)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

2001 (1)

1966 (1)

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

1927 (1)

L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Camb. Philos. Soc. 23(5), 542–548 (1927).
[Crossref]

Bakker, H. J.

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Brio, M.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Chen, D.

Chen, Q.-S.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Chipouline, A.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Ciracì, C.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

Curwen, C. A.

L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, “Metasurface quantum-cascade laser with electrically switchable polarization,” Optica 4(4), 468 (2017).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Decker, M.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Faist, J.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Fang, M.

M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
[Crossref]

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

Fedyanin, A. A.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Feng, K.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Feth, N.

Fischer, M.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Ginzburg, P.

P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
[Crossref]

Helgert, C.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Hoffman, A. J.

Hon, P. W. C.

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Hoyer, W.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Huang, Z.

M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
[Crossref]

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

Huber, R.

C. Kübler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: Generation and field-resolved detection,” Semicond. Sci. Technol. 20(7), S128–S133 (2005).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Itoh, T.

L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, “Metasurface quantum-cascade laser with electrically switchable polarization,” Optica 4(4), 468 (2017).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Kivshar, Y. S.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Klein, M. W.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Kley, E. B.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Koch, S. W.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Krasavin, A. V.

P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
[Crossref]

Kruk, S.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Kübler, C.

C. Kübler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: Generation and field-resolved detection,” Semicond. Sci. Technol. 20(7), S128–S133 (2005).
[Crossref]

Lederer, F.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Leitenstorfer, A.

C. Kübler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: Generation and field-resolved detection,” Semicond. Sci. Technol. 20(7), S128–S133 (2005).
[Crossref]

Linden, S.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, J.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Melentiev, P. N.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Memarian, M.

Moloney, J. V.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Neshev, D. N.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Nienhuys, H.-K.

Niesler, F. B. P.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Panov, V. I.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Paul, T.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Pertsch, T.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Planken, P. C. M.

Poutrina, E.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

Reinhold, J.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Reno, J. L.

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rockstuhl, C.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Scalari, G.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Scalora, M.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

Setzpfandt, F.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Sha, W. E. I.

M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
[Crossref]

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

Shcherbakov, M. R.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Shorokhov, A. S.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Smith, D. R.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

Soukoulis, C. M.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Streyer, W.

Terazzi, R.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Thomas, L. H.

L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Camb. Philos. Soc. 23(5), 542–548 (1927).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tünnermann, A.

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Walther, C.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Wang, L.

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

Wasserman, D.

Wegener, M.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Wenckebach, T.

Williams, B. S.

L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, “Metasurface quantum-cascade laser with electrically switchable polarization,” Optica 4(4), 468 (2017).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Wu, X.

M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
[Crossref]

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

Wurtz, G. A.

P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
[Crossref]

Xiong, X. Y. Z.

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

Xu, L.

L. Xu, D. Chen, C. A. Curwen, M. Memarian, J. L. Reno, T. Itoh, and B. S. Williams, “Metasurface quantum-cascade laser with electrically switchable polarization,” Optica 4(4), 468 (2017).
[Crossref]

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

Yee, K. S.

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Zakharian, A. R.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Zayats, A. V.

P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
[Crossref]

Zeng, Y.

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhong, Y.

ACS Photonics (2)

L. Wang, A. S. Shorokhov, P. N. Melentiev, S. Kruk, M. Decker, C. Helgert, F. Setzpfandt, A. A. Fedyanin, Y. S. Kivshar, and D. N. Neshev, “Multipolar Third-Harmonic Generation in Fishnet Metamaterials,” ACS Photonics 3(8), 1494–1499 (2016).
[Crossref]

P. Ginzburg, A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures,” ACS Photonics 2(1), 8–13 (2015).
[Crossref]

Appl. Phys. Lett. (1)

L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh, and B. S. Williams, “Metasurface external cavity laser,” Appl. Phys. Lett. 107(22), 221105 (2015).
[Crossref]

IEEE J. Multiscale Multiphysics Comput. Tech. (1)

M. Fang, Z. Huang, W. E. I. Sha, and X. Wu, “Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces,” IEEE J. Multiscale Multiphysics Comput. Tech. 2, 194–201 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

J. Comput. Phys. (1)

J. Liu, M. Brio, Y. Zeng, A. R. Zakharian, W. Hoyer, S. W. Koch, and J. V. Moloney, “Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model,” J. Comput. Phys. 229(17), 5921–5932 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 3(1–2), 45–66 (2009).
[Crossref]

Math. Proc. Camb. Philos. Soc. (1)

L. H. Thomas, “The calculation of atomic fields,” Math. Proc. Camb. Philos. Soc. 23(5), 542–548 (1927).
[Crossref]

Nat. Commun. (1)

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (4)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

Phys. Rev. B (2)

J. Reinhold, M. R. Shcherbakov, A. Chipouline, V. I. Panov, C. Helgert, T. Paul, C. Rockstuhl, F. Lederer, E. B. Kley, A. Tünnermann, A. A. Fedyanin, and T. Pertsch, “Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial,” Phys. Rev. B 86(11), 115401 (2012).

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).

Prog. Electromagnetics Res. (1)

M. Fang, Z. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. Wu, “Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials,” Prog. Electromagnetics Res. 157, 63–78 (2016).
[Crossref]

Science (1)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-Harmonic Generation from Magnetic Metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

C. Kübler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: Generation and field-resolved detection,” Semicond. Sci. Technol. 20(7), S128–S133 (2005).
[Crossref]

Other (3)

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, “Light propagation in a fishnet metamaterial,” Phys. Rev. B 78(15), 155102 (2008).
[Crossref]

Q. Tang, M. Liang, and H. Xin, “Terahertz metasurface for potential live cell sensing application,” in IEEE Antennas and Propagation Society,AP-S International Symposium (Digest) (2013), pp. 2279–2280.
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The Yee grids for the Maxwell-Hydrodynamic system
Fig. 2
Fig. 2 (a) Schematic of THz generation by illuminating a metasurface with an infrared laser. (b) The feature size of a unit cell. (c) Transmittance T, reflectance R, and absorptance A spectra.
Fig. 3
Fig. 3 Electric field of incident pulse Einc (a) and transmitted nonlinear signal Ex (b). (c) Semi-log plot of the Fourier transform of the nonlinear signal in (b). (d) time-domain trace of THz field filtered from the signal in (b).
Fig. 4
Fig. 4 Comparisons of pump durations and measured spectral bandwidths. (a,b) The THz pulse traces and corresponding normalized spectral amplitudes measured at several pumping durations (100 fs-180 fs). (c) The FWHM of pump pulse versus the generated THz spectral bandwidth (red dots) and peak frequency (blue dots). The straight lines are the predicted analytical results.
Fig. 5
Fig. 5 Polarization dependence of THz generation from the SRRs metasurface. (a) THz signals for different polarization angles. (b) Polar plot of the peak-to-peak amplitude of THz emission as a function of the polarization angle. (c-f) Perpendicular components of the surface electric field (color scale) and current density (arrows) of the unit cell irradiated by the infrared pulse. The current distributions are shown temporally π/2 phase shifted against the charge distribution.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

×H= ε 0 E t + P t ,
×E= μ 0 H t ,
v t +vv= e m (E+ μ 0 v×H)γv p n ,
n t =(nv).
P ˙ =J=env,
ρ=e( n e n 0 ).
J t = ε 0 ω p 2 EγJ+ e m (ρEJ×B)+( 1 ρ+ ε 0 m ω p 2 /e JJ )
ρ t J=0,
J t = ε 0 ω p 2 EγJ+ e m [ ε 0 (E)EJ×B ]. +( 1 ε 0 (E)+ ε 0 m ω p 2 /e JJ )
2 E THz (z,t) z 2 n THz 2 c 2 2 E THz (z,t) t 2 = 1 ε 0 c 2 2 P THz (2) (z,t) t 2 = χ (2) c 2 2 | E 0 (z,t) | 2 t 2 ,
P (2) (t)~ E 2 (t)=cos(2 ω 0 t+2ϕ) g σ 2 (t)+ g σ 2 (t). P (2) (ω)~ e 2iϕ g 1 2 σ (ω2 ω 0 )+ e 2iϕ g 1 2 σ (ω2 ω 0 )+ g 1 2 σ (ω)
E (THz) (ω)~ χ (2) (iω) 2 g 1 2 σ (ω)= χ (2) ω 2 e ω 2 4 σ 2 . E (THz) (t)~ χ (2) t 2 g 2 σ (t)= χ (2) σ 2 (12 σ 2 t 2 ) e σ 2 t 2

Metrics