Abstract

Thermal cameras were constructed long ago, but working principles and complex technologies still limit their resolution, total number of pixels, and sensitivity. We address the problem of finding a new sensing mechanism surpassing existing limits of thermal radiation detection. Here we reveal the new mechanism on the butterfly wing, whose wing-scales act as pixels of an imaging array on a thermal detector. We observed that the tiniest features of a Morpho butterfly wing-scale match the mean free path of air molecules at atmospheric pressure – a condition when the radiation-induced heating produces an additional, thermophoretic force that deforms the wing-scales. The resulting deformation field was imaged holographically with mK temperature sensitivity and 200 Hz response speed. By imitating butterfly wing-scales, the effect can be further amplified through a suitable choice of material, working pressure, sensor design, and detection method. The technique is universally applicable to any nano-patterned, micro-scale system in other spectral ranges, such as UV and terahertz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging scatterometry of butterfly wing scales

D.G. Stavenga, H.L. Leertouwer, P. Pirih, and M.F. Wehling
Opt. Express 17(1) 193-202 (2009)

Color generation in butte y wings and fabrication of such structures

Teh-Hwa Wong, Mool C. Gupta, Bruce Robins, and Thomas L. Levendusky
Opt. Lett. 28(23) 2342-2344 (2003)

Light and color on the wing: structural colors in butterflies and moths

Helen Ghiradella
Appl. Opt. 30(24) 3492-3500 (1991)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
    [Crossref]
  2. A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
    [Crossref]
  3. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
    [Crossref]
  4. E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared,” Appl. Opt. 45(6), 1093–1097 (2006).
    [Crossref] [PubMed]
  5. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [Crossref]
  6. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  7. M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
    [Crossref]
  8. P. W. Kruse, Uncooled Thermal Imaging - Arrays, Systems, and Applications (SPIE, 2001).
  9. M. T. Mueller, A. P. Pisano, R. Azevedo, D. C. Walther, D. R. Myers, and M. Wasilik, Patent No. WO 2009039193 A1 (2009).
  10. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
    [Crossref]
  11. F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
    [Crossref] [PubMed]
  12. S. Berthier, Photonique des Morphos (Springer Science & Business Media, 2010).
  13. T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
    [Crossref]
  14. D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
    [Crossref] [PubMed]
  15. C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems and Transforms (Pearson Education, Inc., 2008).
  16. Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
    [Crossref]
  17. J. F. Vincent and U. G. K. Wegst, “Design and mechanical properties of insect cuticle,” Arthropod Struct. Dev. 33(3), 187–199 (2004).
    [Crossref] [PubMed]
  18. S. G. Jennings, “The mean free path in air,” J. Aerosol Sci. 19(2), 159–166 (1988).
    [Crossref]
  19. A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
    [Crossref]
  20. M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
    [Crossref]
  21. A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
    [Crossref]
  22. N. K. Gupta and Y. B. Gianchandani, “Thermal transpiration in zeolites: A mechanism for motionless gas pumps,” Appl. Phys. Lett. 93(19), 193511 (2008).
    [Crossref]
  23. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
    [Crossref] [PubMed]
  24. B. Gotsmann and U. Duerig, “Experimental observation of attractive and repolsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87(19), 194102 (2005).
    [Crossref]
  25. T. Kreis, Handbook of Holographic Interferometry Optical and Digital Methods (WILEY-VCH, 2005).
  26. S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
    [Crossref] [PubMed]
  27. M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 202(5), 381–388 (2016).
    [Crossref] [PubMed]
  28. T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
    [Crossref] [PubMed]
  29. X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
    [Crossref]
  30. D. V. Pantelić, D. Ž. Grujić, and D. M. Vasiljević, “Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects,” J. Biomed. Opt. 19(12), 127005 (2014).
    [Crossref] [PubMed]
  31. R. B. Hetnarski and M. R. Eslami, Thermal Stresses - Advanced Theory and Applications (Springer, 2009).
  32. C. Y. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed. (McGraw-Hill, 2002).
  33. O. A. Bauchau and J. I. Craig, Structural Analysis with Applications to Aerospace Structures (Springer, 2009).

2017 (1)

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

2016 (2)

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 202(5), 381–388 (2016).
[Crossref] [PubMed]

2015 (2)

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref] [PubMed]

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

2014 (1)

D. V. Pantelić, D. Ž. Grujić, and D. M. Vasiljević, “Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects,” J. Biomed. Opt. 19(12), 127005 (2014).
[Crossref] [PubMed]

2013 (2)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
[Crossref]

2012 (4)

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
[Crossref]

2011 (2)

Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
[Crossref]

M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
[Crossref]

2010 (1)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

2008 (3)

N. K. Gupta and Y. B. Gianchandani, “Thermal transpiration in zeolites: A mechanism for motionless gas pumps,” Appl. Phys. Lett. 93(19), 193511 (2008).
[Crossref]

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

2006 (2)

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared,” Appl. Opt. 45(6), 1093–1097 (2006).
[Crossref] [PubMed]

2005 (1)

B. Gotsmann and U. Duerig, “Experimental observation of attractive and repolsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87(19), 194102 (2005).
[Crossref]

2004 (1)

J. F. Vincent and U. G. K. Wegst, “Design and mechanical properties of insect cuticle,” Arthropod Struct. Dev. 33(3), 187–199 (2004).
[Crossref] [PubMed]

2002 (2)

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[Crossref]

1988 (1)

S. G. Jennings, “The mean free path in air,” J. Aerosol Sci. 19(2), 159–166 (1988).
[Crossref]

Aguirre, C. M.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Alfano, R. R.

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Altan, H.

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Baldo, M. A.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Bawendi, M. G.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Bulovic, V.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Burwell, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Cardenas, M. R.

M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
[Crossref]

Centeno, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Chen, Y.

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref] [PubMed]

Congreve, D. N.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

De Raedt, H. A.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

Deng, T.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Deshpande, R.

Desjardins, P.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Dillon, A. C.

Duerig, U.

B. Gotsmann and U. Duerig, “Experimental observation of attractive and repolsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87(19), 194102 (2005).
[Crossref]

Ferrell, T. L.

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

Frischkorn, C.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Galán, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Geva, N.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Gianchandani, Y. B.

N. K. Gupta and Y. B. Gianchandani, “Thermal transpiration in zeolites: A mechanism for motionless gas pumps,” Appl. Phys. Lett. 93(19), 193511 (2008).
[Crossref]

Gimelshein, N.

A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
[Crossref]

Gimelshein, S.

A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
[Crossref]

Giraldo, M. A.

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 202(5), 381–388 (2016).
[Crossref] [PubMed]

Goossens, S.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Gotsmann, B.

B. Gotsmann and U. Duerig, “Experimental observation of attractive and repolsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87(19), 194102 (2005).
[Crossref]

Graur, I.

M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
[Crossref]

Grujic, D. Ž.

D. V. Pantelić, D. Ž. Grujić, and D. M. Vasiljević, “Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects,” J. Biomed. Opt. 19(12), 127005 (2014).
[Crossref] [PubMed]

Gupta, N. K.

N. K. Gupta and Y. B. Gianchandani, “Thermal transpiration in zeolites: A mechanism for motionless gas pumps,” Appl. Phys. Lett. 93(19), 193511 (2008).
[Crossref]

Gupta, S.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Hariyama, T.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, G.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Hori, R.

Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
[Crossref]

Ito, T.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Ivan Nikitskiy, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Jean, J.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Jennings, S. G.

S. G. Jennings, “The mean free path in air,” J. Aerosol Sci. 19(2), 159–166 (1988).
[Crossref]

Kampfrath, T.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Ketsdever, A.

A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
[Crossref]

Kim, U.-J.

Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
[Crossref]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Konstantatos, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Koppens, F.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Krenz, M.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Krolikowski, W.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Lasanta, T.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Leertouwer, H. L.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

Lehman, J.

Li, S.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Luo, Z.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Martel, R.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Masuda, N.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Matten, D.

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Meolans, J. G.

M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
[Crossref]

Meriaudeau, F.

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Monasterio, C.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Navickaite, G.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Nishitsuji, T.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Ogawa, Y.

Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
[Crossref]

Okada, N.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Pantelic, D. V.

D. V. Pantelić, D. Ž. Grujić, and D. M. Vasiljević, “Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects,” J. Biomed. Opt. 19(12), 127005 (2014).
[Crossref] [PubMed]

Passian, A.

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

Pérez, R.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Perfetti, L.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Perrier, P.

M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
[Crossref]

Pesquera, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Piqueras, J. J.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Potyrailo, R. A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Puma, E.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Rogalski, A.

A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
[Crossref]

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[Crossref]

Sainta, A.

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Sakurai, T.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Shang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shen, Q.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Shi, X.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Shimobaba, T.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Shiraki, A.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Shvedov, V. G.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

Song, C.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Stavenga, D. G.

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 202(5), 381–388 (2016).
[Crossref] [PubMed]

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Takada, N.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Tao, P.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Theocharous, E.

Thundat, T.

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Van Voorhis, T.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Vasiljevic, D. M.

D. V. Pantelić, D. Ž. Grujić, and D. M. Vasiljević, “Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects,” J. Biomed. Opt. 19(12), 127005 (2014).
[Crossref] [PubMed]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Ventura, A.

A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Vincent, J. F.

J. F. Vincent and U. G. K. Wegst, “Design and mechanical properties of insect cuticle,” Arthropod Struct. Dev. 33(3), 187–199 (2004).
[Crossref] [PubMed]

von Volkmann, K.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Wada, M.

Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
[Crossref]

Wang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Wegst, U. G. K.

J. F. Vincent and U. G. K. Wegst, “Design and mechanical properties of insect cuticle,” Arthropod Struct. Dev. 33(3), 187–199 (2004).
[Crossref] [PubMed]

Welborn, M.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Weng, J. T.

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Wig, A.

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

Wilson, M. W. B.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Wilts, B. D.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

Wolf, M.

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

Wu, M.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

Xin, X.

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

Zhang, D.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhang, P.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref] [PubMed]

Zhang, W.

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Zurutuza, A.

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Adv. Mater. (1)

F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, “Infrared Detection Based on Localized Modification of Morpho Butterfly Wings,” Adv. Mater. 27(6), 1077–1082 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Gotsmann and U. Duerig, “Experimental observation of attractive and repolsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87(19), 194102 (2005).
[Crossref]

N. K. Gupta and Y. B. Gianchandani, “Thermal transpiration in zeolites: A mechanism for motionless gas pumps,” Appl. Phys. Lett. 93(19), 193511 (2008).
[Crossref]

Arthropod Struct. Dev. (1)

J. F. Vincent and U. G. K. Wegst, “Design and mechanical properties of insect cuticle,” Arthropod Struct. Dev. 33(3), 187–199 (2004).
[Crossref] [PubMed]

Carbohydr. Polym. (1)

Y. Ogawa, R. Hori, U.-J. Kim, and M. Wada, “Elastic modulus in the crystalline region and the thermal expansion coefficients of α-chitin determined using synchrotron radiated X-ray diffraction,” Carbohydr. Polym. 83(3), 1213–1217 (2011).
[Crossref]

Comput. Phys. Commun. (1)

T. Shimobaba, J. T. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002).
[Crossref]

J. Aerosol Sci. (1)

S. G. Jennings, “The mean free path in air,” J. Aerosol Sci. 19(2), 159–166 (1988).
[Crossref]

J. Appl. Phys. (2)

A. Passian, A. Wig, F. Meriaudeau, T. L. Ferrell, and T. Thundat, “Knudsen forces on microcantilevers,” J. Appl. Phys. 92(10), 6326–6333 (2002).
[Crossref]

X. Xin, H. Altan, A. Sainta, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

J. Biomed. Opt. (1)

D. V. Pantelić, D. Ž. Grujić, and D. M. Vasiljević, “Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects,” J. Biomed. Opt. 19(12), 127005 (2014).
[Crossref] [PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 202(5), 381–388 (2016).
[Crossref] [PubMed]

J. Fluid Mech. (1)

A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” J. Fluid Mech. 735, 684–704 (2013).
[Crossref]

Nat. Photonics (5)

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nat. Photonics 6(3), 195–200 (2012).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10(1), 31–34 (2016).
[Crossref]

S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Pérez, G. Burwell, T. Ivan Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, “Broadband image sensor array based on graphene–CMOS integration,” Nat. Photonics 11(6), 366–371 (2017).
[Crossref]

Opto-Electron. Rev. (1)

A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
[Crossref]

Phys. Fluids (1)

M. R. Cardenas, I. Graur, P. Perrier, and J. G. Meolans, “Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient,” Phys. Fluids 23(3), 031702 (2011).
[Crossref]

Phys. Rev. Lett. (2)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant Optical Manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010).
[Crossref] [PubMed]

T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, “Mechanism of the Far-Infrared Absorption of Carbon-Nanotube Films,” Phys. Rev. Lett. 101(26), 267403 (2008).
[Crossref] [PubMed]

PLoS One (1)

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS One 7(11), e49743 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref] [PubMed]

Other (8)

T. Kreis, Handbook of Holographic Interferometry Optical and Digital Methods (WILEY-VCH, 2005).

R. B. Hetnarski and M. R. Eslami, Thermal Stresses - Advanced Theory and Applications (Springer, 2009).

C. Y. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed. (McGraw-Hill, 2002).

O. A. Bauchau and J. I. Craig, Structural Analysis with Applications to Aerospace Structures (Springer, 2009).

C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems and Transforms (Pearson Education, Inc., 2008).

S. Berthier, Photonique des Morphos (Springer Science & Business Media, 2010).

P. W. Kruse, Uncooled Thermal Imaging - Arrays, Systems, and Applications (SPIE, 2001).

M. T. Mueller, A. P. Pisano, R. Azevedo, D. C. Walther, D. R. Myers, and M. Wasilik, Patent No. WO 2009039193 A1 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) A photograph of a circular section of a Morpho menelaus butterfly wing attached to a holder. (b) SEM image showing the cantilever-like structure of the Morpho menelaus wing-scale and (see inset) ultrastructure of its surface, with a number of lamellae. (c) A hologram reconstruction of a section of the butterfly wing. (d) A holographic image obtained after irradiation of a butterfly wing with a 980 nm pulsed laser beam (having elliptical beam profile 2.7 mm × 6.8 mm, 8.7 mW power and 128 ms pulse length, corresponding to ~2 mJ/cm2 energy density).
Fig. 2
Fig. 2 (a) Thermal camera image of the butterfly wing section irradiated with the laser beam (at 980 nm wavelength, 8.7 mW power and 128 ms pulse length). (b) Temperature variation (black line) recorded by the thermal camera during laser irradiation. Fast oscillations are camera noise. A laser pulse shape (red line) is shown, too. (c) A corresponding phase difference recorded holographically under the same conditions.
Fig. 3
Fig. 3 Attenuation of the butterfly’s wing response as a function of signal frequency.
Fig. 4
Fig. 4 Scheme of the cross-section of a Morpho butterfly scale. Black dots represent molecules of air at atmospheric conditions. A radiation-induced temperature gradient (black dashed line) is established across the wing scale (Ts<Tc). Dimensions are in nanometers but the drawing is not to the scale. L – lamellae, UL – upper lamina, LL – lower lamina.
Fig. 5
Fig. 5 (a) Scheme of the butterfly wing-scale with dimensional parameters. (b) Perspective view of the FEM wing-scale model. (c) Perspective view of the butterfly wing-scale deflection field.
Fig. 6
Fig. 6 Scheme of a holographic device used to detect photophoretic displacement of a butterfly’s wing. L1 – laser at 532 nm, L2 - laser at 980 nm, L – biconvex lens, CM – concave mirror, C – CMOS camera, W – butterfly wing section, R – reference beam, O – object beam, P – a pinhole used for spatial filtering of the laser beam, M – a flat mirror used to deflect the laser beam.
Fig. 7
Fig. 7 (a) Layers of the wing scale with their masses Mj, thicknesses Dj and absorptivities Aj. (b) A single wing scale treated as a bulk body having the mass M and thickness D equal to sum of masses and thicknesses of its layers. I0 is radiation intensity, A is absorptivity, and Q absorbed energy.
Fig. 8
Fig. 8 Temperature gradient along the wing-scale having the average temperature increase of 1K, assuming the coefficient of absorption α = 4.5·10−4.
Fig. 9
Fig. 9 A scheme of a radiometric system embedded in a fluid with temperature Tr, having a substrate S at temperature Ts, thin membrane M at temperature Tc, surfaces having accommodation coefficients as, act, acb, and the spacing between the substrate and membrane is of the order of the mean free path of the gas molecules.
Fig. 10
Fig. 10 (a) Butterfly wing-scale is approximated with a thin, hollow, corrugated plate attached to the short cantilever beam. (b) Approximation of a wing-scale as a beam with increased pressure due to additional force imposed by the whole scale body.
Fig. 11
Fig. 11 Comparison between analytic and finite element methods applied to the problem of photophoretic deflection of the butterfly wing-scale. (a) Maximum deflection as a function of modulus of elasticity. (b) Maximum deflection as a function of the wing-scale length.

Tables (1)

Tables Icon

Table 1 Environmental, dimensional and mechanical parameters of the butterfly wing-scale model.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Q=McΔT,
I0A=McΔT,
I0= McΔT A .
I0Aj=MjcΔTj.
ΔTj= M M j A j A ΔT.
Δ T j = j=1 M j M j A j A ΔT= j=1 D j D j A j A ΔT= D D j A j A ΔT.
Δ 0 = k L 0 2 2 δ T t ,
P= P r 2 [ a s τ s + a cb ( 1 a s ) τ c a s + a cb a s a cb + a cb τ c + a s ( 1 a cb ) τ s a s + a cb a s a cb 1 a ct + a ct τ c 1 ],
P= P r 2 [ τ s 1 ] = P r 2 [ T r + δ T T r 1 ] = P r 2 [ 1+ δ T T r 1 ].
P= P r 2 [ 1+ δ T T r 1 ] P r 2 [ 1+ 1 2 δ T T r 1 ] = P r δ T 4 T r .
P= P 0 b 0 r .
Δ= W L 0 4 8EI ,
W=P b 0 .
Δ= 1 32E P r T r b 0 2 L 0 4 rI δ T .

Metrics