Abstract

Metasurfaces provide an alternative way to design three-dimensional arbitrary-shaped carpet cloaks with ultrathin thicknesses. Nevertheless, the previous metasurface carpet cloaks work only at a single frequency. To overcome this challenge, we here propose a macroscopic metasurface carpet cloak. The cloak is designed with a metasurface of a few layers that exhibit a special spatial distribution of the conductance and inductance in the unit cell; therefore, it can fully control the reflection phases at several independent frequencies simultaneously. Because of this, the present metasurface cloak can work at dual frequencies based on multi-resonance principle. The proposed design methodology will be very useful in future broadband macroscopic cloaks design with low profiles, light weights, and easy access.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin metasurface-based carpet cloak for terahertz wave

Minggui Wei, Quanlong Yang, Xueqian Zhang, Yanfeng Li, Jianqiang Gu, Jiaguang Han, and Weili Zhang
Opt. Express 25(14) 15635-15642 (2017)

Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface

Elnaz Shokati, Nosrat Granpayeh, and Mohammad Danaeifar
Appl. Opt. 56(11) 3053-3058 (2017)

Carpet cloaking on a dielectric half-space

Pu Zhang, Michaël Lobet, and Sailing He
Opt. Express 18(17) 18158-18163 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  2. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  3. S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
    [Crossref] [PubMed]
  4. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref] [PubMed]
  5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  7. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
    [Crossref] [PubMed]
  8. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
    [Crossref] [PubMed]
  9. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
    [Crossref] [PubMed]
  10. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  11. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
    [Crossref] [PubMed]
  12. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
    [Crossref] [PubMed]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  14. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  15. B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
    [Crossref]
  16. F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
    [Crossref]
  17. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  18. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
    [Crossref]
  19. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
    [Crossref] [PubMed]
  20. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref] [PubMed]
  21. D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
    [Crossref]
  22. A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
  23. G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
    [Crossref]
  24. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [Crossref] [PubMed]
  25. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  26. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  27. J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
    [Crossref] [PubMed]
  28. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  29. B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
    [Crossref] [PubMed]
  30. S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
    [Crossref]
  31. X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
    [Crossref]
  32. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
    [Crossref] [PubMed]
  33. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  34. L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
    [Crossref]
  35. X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. S. Chen, B. L. Zhang, J. D. Joannopoulos, and M. Soljaciˇcˇ, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. 201701830 (2017).
  36. Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
    [Crossref]
  37. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  38. B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
    [Crossref]
  39. N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
    [Crossref]
  40. J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
    [Crossref]
  41. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
    [Crossref] [PubMed]
  42. D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
    [Crossref]
  43. L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
    [Crossref]
  44. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
    [Crossref] [PubMed]
  45. B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
    [Crossref]
  46. M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
    [Crossref] [PubMed]
  47. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  48. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]

2018 (1)

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

2017 (6)

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

2016 (5)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

2015 (6)

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

2014 (1)

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

2013 (4)

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

2012 (3)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

2011 (4)

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

2010 (3)

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

2009 (7)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

2008 (1)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

2007 (1)

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Alù, A.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Baek, S.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Beruete, M.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

Bilotti, F.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Cai, W. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Chan, T.

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

Chen, H.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chen, H. S.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Cheng, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Choi, M.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Cui, T. J.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Deslandes, D.

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Estakhri, N. M.

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

Fan, J. M.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Feng, Y. J.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Gao, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Gu, J.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Han, J.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Hao, R.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Hsu, L. Y.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Huang, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jia, H.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Jiang, T.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Jiang, Y.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Jing, L.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Jing, L. Q.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Joannopoulos, J. D.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Jung, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, G.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kante, B.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, K.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kong, J. A.

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Koschny, T.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Labate, G.

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Lepetit, T.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Li, E.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Li, E. P.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Li, Y.

Liang, D.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Liu, L.

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, X.

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Liu, Y. M.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Luo, Y.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

Madni, H. A.

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Matekovits, L.

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Maturi, R.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mohammadi Estakhri, N.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

Monticone, F.

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Mortensen, N. A.

Moser, H. O.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Orazbayev, B.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

Park, H.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Rajput, A.

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

Ramaccia, D.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shen, L.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Shen, N. H.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Shen, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Shin, D.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Soljacic, M.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Srivastava, K. V.

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Sun, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Tobia, A.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Toscano, A.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Urzhumov, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Wang, H.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Wang, H. P.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wang, Z. J.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Wei, M.

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, B. I.

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Wu, K.

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

Xi, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Xiong, S.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Xu, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Xu, S.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, X. F.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Xu, Y.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, Z.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Yang, F.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Yang, Q.

Yang, Y.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Yang, Y. H.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Yao, K.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Yin, W.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Yin, W. Y.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Yu, F.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, B.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, R.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zhang, S.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

Zhang, W.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Zhang, W. R.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Zhang, X.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, X. M.

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Zhao, J. M.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Zhao, R.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Zheng, B.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Zhong, L. M.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (2)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

Laser Photonics Rev. (1)

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Light Sci. Appl. (1)

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Nat. Commun. (4)

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

NPG Asia Mater. (1)

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Phys. Rev. B (2)

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Sci. Rep. (1)

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Science (10)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Other (1)

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. S. Chen, B. L. Zhang, J. D. Joannopoulos, and M. Soljaciˇcˇ, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. 201701830 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Single-frequency metasurface cloak. The metasurfaces can only restore the reflected light at a single frequency. The red and green arrows represent light with different wavelengths, respectively. (b) Schematic view of multi-resonance metasurface cloak. The orange, green, and red arrows represent light with different wavelengths, respectively. (c) Working principle of the multi-resonance metasurface cloak. The metasurfaces involve multiple resonances and can manipulate lights with different wavelengths simultaneously. The red and green arrows represent lights with different wavelengths, respectively.
Fig. 2
Fig. 2 (a) Structure of the unit cell of the proposed metasurface. Each unit cell consists of two H-shaped metallic structures with respective size positioning on substrate with a permittivity of 3.5. The periods along x and y directions are s = 5 mm and h = 12 mm; the thickness of the substrate is 1.5 mm; the thickness of the copper layer is t2 = 0.5 mm and the width of the copper wire is w = 1 mm. Three of the parameters, i.e. H patch height a1, a2 and the distance between patch and margin of substrate d/2, are changed to accommodate the desired phase. (b) The phase of S11 for unit cell with the following parameters: a1 = 8 mm, a2 = 6.5 mm, and d = 1.5 mm. The three black dots with large slopes correspond to three resonances (f1 = 6.80 GHz, f2 = 8.75 GHz, and f3 = 15.2 GHz), respectively. (c) The Ex field distribution corresponds to the three resonant points in (b).
Fig. 3
Fig. 3 (a) Measured reflection phases when wave with different frequencies (fl = 7.8 GHz, fh = 12.3 GHz) are incident upon a unit cell in various sizes. Each blue hollow dot represents one size of H chip. If these blue dots are able to cover the entire 2π  area, it means that the proposed structure can manipulate lights at multiple frequencies perfectly. (b) The comparison between theoretical and simulation results for reflected phases of 20 evenly spaced discrete point, which is on behalf of the border line of our bump. Points on red line are the phase reflected by the ground without bump. Points on blue line are the closest points in (a) from the red line. (c) The corresponding a1, a2, and d for each unit cell of the triangle metasurface cloak. (d) The 3D scheme of simulation model constructed according to the sizes in (c). Here the bump is an isosceles triangle, whose waist length l is 100 mm and base angle α is 20 degree.
Fig. 4
Fig. 4 Scattering magnetic field (Hy) distribution on the xz plane with TM polarized wave normally incident onto (a) a bare PEC bump at 7.8 GHz. (b) a bare PEC bump at 12.3 GHz. (c) a cloaked bump at 7.8 GHz. (d) a cloaked bump at 12.3 GHz, respectively.
Fig. 5
Fig. 5 Vertical incidence. (a) The reduced total scattering RCS of the cloaked bump around 7.8 GHz. (b) The normalized differential RCS of the cloaked bump and bared bump at 7.8 GHz, respectively. (c) The reduced total scattering RCS of the cloaked bump around 12.3 GHz. (d) The normalized differential RCS of the cloaked bump and bared bump at 12.3 GHz, respectively.
Fig. 6
Fig. 6 Scattering magnetic field (Hy) distribution on the xz plane with TM polarized wave obliquely incident (with an incident angle of 10°) onto (a) a bare PEC bump at 7.8 GHz. (b) a bare PEC bump at 12.3 GHz. (c) a cloaked bump at 7.8 GHz. (d) a cloaked bump at 12.3 GHz, respectively.
Fig. 7
Fig. 7 Oblique incidence with the incidence angle of 10°. (a) The reduced total scattering RCS of the cloaked bump around 7.8 GHz. (b) The normalized differential RCS of the cloaked bump and bared bump at 7.8 GHz, respectively. (c) The reduced total scattering RCS of the cloaked bump around 12.3 GHz. (d) The normalized differential RCS of the cloaked bump and bared bump at 12.3 GHz, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ 1 =π4π f 1 hcosθ/catfrequencyof f 1 , Δ ϕ 2 =π4π f 2 hcosθ/catfrequencyof f 2 , Δ ϕ 3 =π4π f 3 hcosθ/catfrequencyof f 3 , ... Δ ϕ n =π4π f n hcosθ/catfrequencyof f n ,
H cloaked,scat = H cloaked,tot - H ground,tot , H bare,scat = H bare,tot - H ground,tot ,
σ diff =2πσ | H scatter | 2 ,
σ reduced = σ cloaked / σ bare = Ω | H cloaked,scat | 2 dΩ/ Ω | H bare,scat | 2 dΩ ,

Metrics