Abstract

Demand continues to rise for custom-fabricated and engineered colloidal microparticles across a breadth of application areas. This paper demonstrates an improvement in the fabrication rate of high-resolution 3D colloidal particles by using two-photon scanning lithography within a microfluidic channel. To accomplish this, we present (1) an experimental setup that supports fast, 3D scanning by synchronizing a galvanometer, piezoelectric stage, and an acousto-optic switch, and (2) a new technique for modifying the laser’s scan path to compensate for the relative motion of the rapidly-flowing photopolymer medium. The result is an instrument that allows for rapid conveyor-belt-like fabrication of colloidal objects with arbitrary 3D shapes and micron-resolution features.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of diffractive optical elements on 3-D curved surfaces by capillary force lithography

Dengying Zhang, Weixing Yu, Taisheng Wang, Zhenwu Lu, and Qiang Sun
Opt. Express 18(14) 15009-15016 (2010)

Quasi-isotropic 3-D resolution in two-photon scanning microscopy

Cristina Ibáñez-López, Genaro Saavedra, Gilbert Boyer, and Manuel Martínez-Corral
Opt. Express 13(16) 6168-6174 (2005)

Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement

S. Santosh Kumar and Jiarong Hong
Opt. Express 26(10) 12779-12789 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
    [PubMed]
  2. S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
    [Crossref] [PubMed]
  3. A. B. Bernard, C.-C. Lin, and K. S. Anseth, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng. Part C Methods 18(8), 583–592 (2012).
    [Crossref] [PubMed]
  4. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
    [Crossref] [PubMed]
  5. D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
    [Crossref] [PubMed]
  6. M. Yıldırım, A. Sarılmaz, and F. Özel, “Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets,” J. Mater. Sci. Mater. Electron. 29(1), 762–770 (2018).
    [Crossref]
  7. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers,” J. Control. Release 121(1-2), 3–9 (2007).
    [Crossref] [PubMed]
  8. B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
    [Crossref]
  9. J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
    [Crossref]
  10. A. Ostendorf, R. Ghadiri, and S. I. Ksouri, “Optical tweezers in microassembly,” Proc. SPIE 8607, 86070U (2013).
    [Crossref]
  11. S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
    [Crossref]
  12. M. Okubo, Y. Konishi, and H. Minami, “Production of hollow polymer particles by suspension polymerization,” Colloid Polym. Sci. 276(7), 638–642 (1998).
    [Crossref]
  13. P. J. Colver, C. A. L. Colard, and S. A. F. Bon, “Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles,” J. Am. Chem. Soc. 130(50), 16850–16851 (2008).
    [Crossref] [PubMed]
  14. R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
    [Crossref]
  15. P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals,” Science 291(5503), 453–457 (2001).
    [Crossref] [PubMed]
  16. C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles,” J. Phys. Chem. C 111(12), 4477–4480 (2007).
    [Crossref]
  17. J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
    [Crossref] [PubMed]
  18. T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
    [Crossref] [PubMed]
  19. D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
    [Crossref] [PubMed]
  20. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
    [Crossref] [PubMed]
  21. S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
    [Crossref]
  22. K. S. Paulsen, D. Di Carlo, and A. J. Chung, “Optofluidic fabrication for 3D-shaped particles,” Nat. Commun. 6(1), 6976 (2015).
    [Crossref] [PubMed]
  23. S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
    [Crossref] [PubMed]
  24. G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
    [Crossref] [PubMed]
  25. T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
    [Crossref] [PubMed]
  26. S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
    [Crossref]
  27. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
    [Crossref] [PubMed]
  28. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Physica A 100, 181–191 (2010).
  29. Y. Song, R. M. Panas, and J. B. Hopkins, “A review of micromirror arrays,” Precis. Eng. 51, 729–761 (2018).
    [Crossref]

2018 (3)

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

M. Yıldırım, A. Sarılmaz, and F. Özel, “Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets,” J. Mater. Sci. Mater. Electron. 29(1), 762–770 (2018).
[Crossref]

Y. Song, R. M. Panas, and J. B. Hopkins, “A review of micromirror arrays,” Precis. Eng. 51, 729–761 (2018).
[Crossref]

2017 (2)

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
[Crossref]

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

2016 (2)

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
[Crossref]

2015 (2)

K. S. Paulsen, D. Di Carlo, and A. J. Chung, “Optofluidic fabrication for 3D-shaped particles,” Nat. Commun. 6(1), 6976 (2015).
[Crossref] [PubMed]

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

2013 (1)

A. Ostendorf, R. Ghadiri, and S. I. Ksouri, “Optical tweezers in microassembly,” Proc. SPIE 8607, 86070U (2013).
[Crossref]

2012 (2)

A. B. Bernard, C.-C. Lin, and K. S. Anseth, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng. Part C Methods 18(8), 583–592 (2012).
[Crossref] [PubMed]

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

2011 (2)

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
[Crossref] [PubMed]

2010 (4)

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Physica A 100, 181–191 (2010).

2009 (1)

B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
[Crossref]

2008 (1)

P. J. Colver, C. A. L. Colard, and S. A. F. Bon, “Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles,” J. Am. Chem. Soc. 130(50), 16850–16851 (2008).
[Crossref] [PubMed]

2007 (4)

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers,” J. Control. Release 121(1-2), 3–9 (2007).
[Crossref] [PubMed]

C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles,” J. Phys. Chem. C 111(12), 4477–4480 (2007).
[Crossref]

2006 (1)

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

2005 (1)

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

2004 (1)

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

2001 (1)

P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals,” Science 291(5503), 453–457 (2001).
[Crossref] [PubMed]

1998 (1)

M. Okubo, Y. Konishi, and H. Minami, “Production of hollow polymer particles by suspension polymerization,” Colloid Polym. Sci. 276(7), 638–642 (1998).
[Crossref]

Abedin, R.

R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
[Crossref]

Anseth, K. S.

A. B. Bernard, C.-C. Lin, and K. S. Anseth, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng. Part C Methods 18(8), 583–592 (2012).
[Crossref] [PubMed]

Appleyard, D. C.

D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
[Crossref] [PubMed]

Baati, T.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Bear, J. E.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Benedikt, S.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Bernard, A. B.

A. B. Bernard, C.-C. Lin, and K. S. Anseth, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng. Part C Methods 18(8), 583–592 (2012).
[Crossref] [PubMed]

Bertone, J. F.

P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals,” Science 291(5503), 453–457 (2001).
[Crossref] [PubMed]

Bohling, J.

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Bon, S. A. F.

P. J. Colver, C. A. L. Colard, and S. A. F. Bon, “Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles,” J. Am. Chem. Soc. 130(50), 16850–16851 (2008).
[Crossref] [PubMed]

Bories, P. N.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Brownell, S.

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Camposeo, A.

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

Chalati, T.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Champion, J. A.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers,” J. Control. Release 121(1-2), 3–9 (2007).
[Crossref] [PubMed]

Chang, J. S.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Chapin, S. C.

D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
[Crossref] [PubMed]

Chung, A. J.

K. S. Paulsen, D. Di Carlo, and A. J. Chung, “Optofluidic fabrication for 3D-shaped particles,” Nat. Commun. 6(1), 6976 (2015).
[Crossref] [PubMed]

Chung, S. E.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Cingolani, R.

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

Clayette, P.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Colard, C. A. L.

P. J. Colver, C. A. L. Colard, and S. A. F. Bon, “Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles,” J. Am. Chem. Soc. 130(50), 16850–16851 (2008).
[Crossref] [PubMed]

Collins, J.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Colver, P. J.

P. J. Colver, C. A. L. Colard, and S. A. F. Bon, “Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles,” J. Am. Chem. Soc. 130(50), 16850–16851 (2008).
[Crossref] [PubMed]

Colvin, V. L.

P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals,” Science 291(5503), 453–457 (2001).
[Crossref] [PubMed]

Cong, H.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Couvreur, P.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Cuadra, J. A.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
[Crossref]

Cynober, L.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Dendukuri, D.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Denison, G. M.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

DeSimone, J. M.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

Di Carlo, D.

K. S. Paulsen, D. Di Carlo, and A. J. Chung, “Optofluidic fabrication for 3D-shaped particles,” Nat. Commun. 6(1), 6976 (2015).
[Crossref] [PubMed]

Dietliker, K.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Divin, C.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
[Crossref]

Doyle, P. S.

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
[Crossref] [PubMed]

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Ellington, A. D.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Eubank, J. F.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Euliss, L. E.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

Exner, A. E.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

Fasano, D.

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Férey, G.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Fischer, J.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Fransaer, J.

B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
[Crossref]

Ghadiri, R.

A. Ostendorf, R. Ghadiri, and S. I. Ksouri, “Optical tweezers in microassembly,” Proc. SPIE 8607, 86070U (2013).
[Crossref]

Gil, S.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Gillet, B.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Grayson, S. M.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Gref, R.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Grützmacher, H.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Gu, C.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Gu, S. S.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

Gupta, A.

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

Hatton, T. A.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Herlihy, K. P.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

Hernandez, C. J.

C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles,” J. Phys. Chem. C 111(12), 4477–4480 (2007).
[Crossref]

Heurtaux, D.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Hill, W. A.

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

Hogan, Z. L.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Hopkins, J. B.

Y. Song, R. M. Panas, and J. B. Hopkins, “A review of micromirror arrays,” Precis. Eng. 51, 729–761 (2018).
[Crossref]

Horcajada, P.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Hsia, B.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Hwang, Y. K.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Jiang, P.

P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals,” Science 291(5503), 453–457 (2001).
[Crossref] [PubMed]

Jiang, S.

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Johnson, D. M.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Jones, S. W.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Kannappan, R.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Katare, Y. K.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers,” J. Control. Release 121(1-2), 3–9 (2007).
[Crossref] [PubMed]

Kelemen, L.

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Physica A 100, 181–191 (2010).

Kersey, F. R.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Kirby, R.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Knopf, F. C.

R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
[Crossref]

Konishi, Y.

M. Okubo, Y. Konishi, and H. Minami, “Production of hollow polymer particles by suspension polymerization,” Colloid Polym. Sci. 276(7), 638–642 (1998).
[Crossref]

Kreuz, C.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Ksouri, S. I.

A. Ostendorf, R. Ghadiri, and S. I. Ksouri, “Optical tweezers in microassembly,” Proc. SPIE 8607, 86070U (2013).
[Crossref]

Kwon, S.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Laza, S. C.

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

Le Goff, G. C.

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

Lee, J.

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

Lin, C.-C.

A. B. Bernard, C.-C. Lin, and K. S. Anseth, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng. Part C Methods 18(8), 583–592 (2012).
[Crossref] [PubMed]

Liska, R.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Luft, J. C.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Madivala, B.

B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
[Crossref]

Manthiram, K.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Markovic, M.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Marsaud, V.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Mason, T. G.

C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles,” J. Phys. Chem. C 111(12), 4477–4480 (2007).
[Crossref]

Maurice, A.

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Maynor, B. W.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

Meiring, J. E.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Merkel, T. J.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

Minami, H.

M. Okubo, Y. Konishi, and H. Minami, “Production of hollow polymer particles by suspension polymerization,” Colloid Polym. Sci. 276(7), 638–642 (1998).
[Crossref]

Mitragotri, S.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers,” J. Control. Release 121(1-2), 3–9 (2007).
[Crossref] [PubMed]

Moszner, N.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Napier, M.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Neves, A. A. R.

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

Nunes, J.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

Okubo, M.

M. Okubo, Y. Konishi, and H. Minami, “Production of hollow polymer particles by suspension polymerization,” Colloid Polym. Sci. 276(7), 638–642 (1998).
[Crossref]

Orgel, R. M.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

Ormos, P.

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Physica A 100, 181–191 (2010).

Ostendorf, A.

A. Ostendorf, R. Ghadiri, and S. I. Ksouri, “Optical tweezers in microassembly,” Proc. SPIE 8607, 86070U (2013).
[Crossref]

Ovsianikov, A.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Özel, F.

M. Yıldırım, A. Sarılmaz, and F. Özel, “Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets,” J. Mater. Sci. Mater. Electron. 29(1), 762–770 (2018).
[Crossref]

Panas, R. M.

Y. Song, R. M. Panas, and J. B. Hopkins, “A review of micromirror arrays,” Precis. Eng. 51, 729–761 (2018).
[Crossref]

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
[Crossref]

Park, H.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Park, N.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Park, W.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Paulsen, K. S.

K. S. Paulsen, D. Di Carlo, and A. J. Chung, “Optofluidic fabrication for 3D-shaped particles,” Nat. Commun. 6(1), 6976 (2015).
[Crossref] [PubMed]

Peng, Q.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Pishko, M. V.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Pisignano, D.

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

Pojman, J. A.

R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
[Crossref]

Polo, M.

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

Pregibon, D. C.

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

Rathsack, B. M.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Rice, R. G.

R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
[Crossref]

Rolland, J. P.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

Saha, S. K.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
[Crossref]

Sarilmaz, A.

M. Yıldırım, A. Sarılmaz, and F. Özel, “Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets,” J. Mater. Sci. Mater. Electron. 29(1), 762–770 (2018).
[Crossref]

Schmid, M. J.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Sebrie, C.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Serre, C.

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Shields, A. R.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Song, Y.

Y. Song, R. M. Panas, and J. B. Hopkins, “A review of micromirror arrays,” Precis. Eng. 51, 729–761 (2018).
[Crossref]

Srinivas, R. L.

D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
[Crossref] [PubMed]

Tang, Q.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Tian, C.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Van Dyk, A.

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Vandebril, S.

B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
[Crossref]

Vermant, J.

B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
[Crossref]

Vizsnyiczai, G.

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Physica A 100, 181–191 (2010).

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Wang, A. Z.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Wang, J.

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Wegener, M.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Willson, C. G.

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Wu, H.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Xu, X.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Yildirim, M.

M. Yıldırım, A. Sarılmaz, and F. Özel, “Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets,” J. Mater. Sci. Mater. Electron. 29(1), 762–770 (2018).
[Crossref]

Yu, B.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Yu, K.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Zamboni, W. C.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Zhai, F.

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Adv Sci (Weinh) (1)

G. C. Le Goff, J. Lee, A. Gupta, W. A. Hill, and P. S. Doyle, “High-Throughput Contact Flow Lithography,” Adv Sci (Weinh) 2(10), 1500149 (2015).
[Crossref] [PubMed]

Adv. Colloid Interface Sci. (1)

B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, and F. Zhai, “Current status and future developments in preparation and application of nonspherical polymer particles,” Adv. Colloid Interface Sci. 42, 7774 (2018).
[PubMed]

Adv. Mater. (2)

S. C. Laza, M. Polo, A. A. R. Neves, R. Cingolani, A. Camposeo, and D. Pisignano, “Two-photon continuous flow lithography,” Adv. Mater. 24(10), 1304–1308 (2012).
[Crossref] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Chem. Mater. (1)

J. E. Meiring, M. J. Schmid, S. M. Grayson, B. M. Rathsack, D. M. Johnson, R. Kirby, R. Kannappan, K. Manthiram, B. Hsia, Z. L. Hogan, A. D. Ellington, M. V. Pishko, and C. G. Willson, “Hydrogel biosensor array platform indexed by shape,” Chem. Mater. 16(26), 5574–5580 (2004).
[Crossref]

Chem. Soc. Rev. (1)

S. Jiang, A. Van Dyk, A. Maurice, J. Bohling, D. Fasano, and S. Brownell, “Design colloidal particle morphology and self-assembly for coating applications,” Chem. Soc. Rev. 46(12), 3792–3807 (2017).
[Crossref] [PubMed]

Colloid Polym. Sci. (1)

M. Okubo, Y. Konishi, and H. Minami, “Production of hollow polymer particles by suspension polymerization,” Colloid Polym. Sci. 276(7), 638–642 (1998).
[Crossref]

Ind. Eng. Chem. Res. (1)

R. Abedin, J. A. Pojman, F. C. Knopf, and R. G. Rice, “Suspended Droplet Polymerization in an Unstable, Vibrating Shallow-Bed Reactor,” Ind. Eng. Chem. Res. 55(8), 2493–2503 (2016).
[Crossref]

J. Am. Chem. Soc. (2)

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials,” J. Am. Chem. Soc. 127(28), 10096–10100 (2005).
[Crossref] [PubMed]

P. J. Colver, C. A. L. Colard, and S. A. F. Bon, “Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles,” J. Am. Chem. Soc. 130(50), 16850–16851 (2008).
[Crossref] [PubMed]

J. Control. Release (1)

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers,” J. Control. Release 121(1-2), 3–9 (2007).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Electron. (1)

M. Yıldırım, A. Sarılmaz, and F. Özel, “Investigation of optical and device parameters of colloidal copper tungsten selenide ternary nanosheets,” J. Mater. Sci. Mater. Electron. 29(1), 762–770 (2018).
[Crossref]

J. Micro Nano-Manufacturing (1)

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro Nano-Manufacturing 5(3), 31002 (2017).
[Crossref]

J. Phys. Chem. C (1)

C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: Monodisperse dispersions of shape-designed LithoParticles,” J. Phys. Chem. C 111(12), 4477–4480 (2007).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, and R. Liska, “Highly efficient water-soluble visible light photoinitiators,” J. Polym. Sci. A Polym. Chem. 54(4), 473–479 (2016).
[Crossref]

Lab Chip (1)

D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, “Stop-flow lithography in a microfluidic device,” Lab Chip 7(7), 818–828 (2007).
[Crossref] [PubMed]

Langmuir (1)

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

K. S. Paulsen, D. Di Carlo, and A. J. Chung, “Optofluidic fabrication for 3D-shaped particles,” Nat. Commun. 6(1), 6976 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[Crossref] [PubMed]

P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref, “Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,” Nat. Mater. 9(2), 172–178 (2010).
[Crossref] [PubMed]

Nat. Protoc. (1)

D. C. Appleyard, S. C. Chapin, R. L. Srinivas, and P. S. Doyle, “Bar-coded hydrogel microparticles for protein detection: Synthesis, assay and scanning,” Nat. Protoc. 6(11), 1761–1774 (2011).
[Crossref] [PubMed]

Physica A (1)

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Physica A 100, 181–191 (2010).

Precis. Eng. (1)

Y. Song, R. M. Panas, and J. B. Hopkins, “A review of micromirror arrays,” Precis. Eng. 51, 729–761 (2018).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields, M. Napier, J. C. Luft, H. Wu, W. C. Zamboni, A. Z. Wang, J. E. Bear, and J. M. DeSimone, “Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles,” Proc. Natl. Acad. Sci. U.S.A. 108(2), 586–591 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Ostendorf, R. Ghadiri, and S. I. Ksouri, “Optical tweezers in microassembly,” Proc. SPIE 8607, 86070U (2013).
[Crossref]

Science (1)

P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals,” Science 291(5503), 453–457 (2001).
[Crossref] [PubMed]

Soft Matter (1)

B. Madivala, S. Vandebril, J. Fransaer, and J. Vermant, “Exploiting particle shape in solid stabilized emulsions,” Soft Matter 5(8), 1717 (2009).
[Crossref]

Tissue Eng. Part C Methods (1)

A. B. Bernard, C.-C. Lin, and K. S. Anseth, “A Microwell Cell Culture Platform for the Aggregation of Pancreatic β-Cells,” Tissue Eng. Part C Methods 18(8), 583–592 (2012).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Overview of the scanning two-photon continuous flow lithography approach

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The experimental setup includes a femtosecond laser (fs) for two-photon lithography, imaging system, and microfluidic system. M: mirror; BB: beam block; BE: beam expander; Meter: power meter; 4-F: 4-F telescope relay; DM: dichroic mirror; TL: tube lens.
Fig. 2
Fig. 2 Laser-scan files designed for static media (a) produce warped particles in high-flowrate microchannels (b). An overcompensated (c) and correctly-compensated (d) particle are shown. Each particle had a minimum feature size of 800nm.
Fig. 3
Fig. 3 Three examples of 2D structures fabricated with scanning TP-CFL: 10µm stars (a), 5µm stars (b), and X-box patterns (c).
Fig. 4
Fig. 4 3D gears (a) and pyramids (b) are rotated by shear forces in the microfluidic channel’s boundary layer, allowing them to be imaged on their side.