Abstract

We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiband coherent perfect absorption in a water-based metasurface

Weiren Zhu, Ivan D. Rukhlenko, Fajun Xiao, Chong He, Junping Geng, Xianling Liang, Malin Premaratne, and Ronghong Jin
Opt. Express 25(14) 15737-15745 (2017)

Metamaterial perfect absorber based on artificial dielectric “atoms”

Xiaoming Liu, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou
Opt. Express 24(18) 20454-20460 (2016)

Controllable coherent perfect absorption in a composite film

Shourya Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal
Opt. Express 20(2) 1330-1336 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [Crossref] [PubMed]
  2. A. Yariv, “Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  3. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [Crossref] [PubMed]
  4. S. D. Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32(11), 1483–1485 (2007).
    [Crossref] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  7. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref] [PubMed]
  8. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  9. Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
    [Crossref] [PubMed]
  10. S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
    [Crossref]
  11. S. Longhi and G. D. Valle, “Coherent perfect absorbers for transient, periodic, or chaotic optical fields: Time-reversed lasers beyond threshold,” Phys. Rev. A 85(5), 053838 (2012).
    [Crossref]
  12. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref] [PubMed]
  13. H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
    [Crossref] [PubMed]
  14. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
    [Crossref] [PubMed]
  15. H. Noh, S. M. Popoff, and H. Cao, “Broadband subwavelength focusing of light using a passive sink,” Opt. Express 21(15), 17435–17446 (2013).
    [Crossref] [PubMed]
  16. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  17. M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
    [Crossref] [PubMed]
  18. G. Ramakrishnan, G. K. P. Ramanandan, A. J. L. Adam, M. Xu, N. Kumar, R. W. A. Hendrikx, and P. C. M. Planken, “Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals,” Opt. Express 21(14), 16784–16798 (2013).
    [Crossref] [PubMed]
  19. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  20. J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
    [Crossref]
  21. Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
    [Crossref]
  22. Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
    [Crossref] [PubMed]
  23. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
    [Crossref] [PubMed]
  24. F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
    [Crossref]
  25. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
    [Crossref] [PubMed]
  26. S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
    [Crossref]
  27. T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
    [Crossref] [PubMed]
  28. J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41(11), 2537–2540 (2016).
    [Crossref] [PubMed]
  29. A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. (Berlin) 528(7-8), 537–542 (2016).
    [Crossref]
  30. V. Klimov, S. Sun, and G.-Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20(12), 13071–13081 (2012).
    [Crossref] [PubMed]
  31. R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
    [Crossref]
  32. J. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
    [Crossref] [PubMed]
  33. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
    [Crossref]
  34. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  35. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
    [Crossref]
  36. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  37. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  38. Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
    [Crossref]
  39. R. L. Chern and Y. T. Chen, “Effective parameters for photonic crystals with large dielectric contrast,” Phys. Rev. B 80(7), 075118 (2009).
    [Crossref]
  40. D. Torrent and J. Sánchez-Dehesa, “Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials,” New J. Phys. 13(9), 093018 (2011).
    [Crossref]
  41. Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
    [Crossref] [PubMed]
  42. X. X. Liu and A. Alù, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B 87(23), 235136 (2013).
    [Crossref]
  43. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
    [Crossref] [PubMed]
  44. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  45. Y. Wu, “A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal,” Opt. Express 22(2), 1906–1917 (2014).
    [Crossref] [PubMed]
  46. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
    [Crossref] [PubMed]
  47. V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
    [Crossref]
  48. X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84(23), 235106 (2011).
    [Crossref]
  49. A. Castanié, J.-F. Mercier, S. Félix, and A. Maurel, “Generalized method for retrieving effective parameters of anisotropic metamaterials,” Opt. Express 22(24), 29937–29953 (2014).
    [Crossref] [PubMed]
  50. K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).
  51. F. Monticone, C. A. Valagiannopoulos, and A. Alù, “Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging,” Phys. Rev. X 6(4), 041018 (2016).
    [Crossref]

2016 (4)

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

J. M. Rothenberg, C. P. Chen, J. J. Ackert, J. I. Dadap, A. P. Knights, K. Bergman, R. M. Osgood, and R. R. Grote, “Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator,” Opt. Lett. 41(11), 2537–2540 (2016).
[Crossref] [PubMed]

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. (Berlin) 528(7-8), 537–542 (2016).
[Crossref]

F. Monticone, C. A. Valagiannopoulos, and A. Alù, “Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging,” Phys. Rev. X 6(4), 041018 (2016).
[Crossref]

2015 (2)

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

2014 (8)

J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
[Crossref]

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
[Crossref] [PubMed]

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Y. Wu, “A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal,” Opt. Express 22(2), 1906–1917 (2014).
[Crossref] [PubMed]

A. Castanié, J.-F. Mercier, S. Félix, and A. Maurel, “Generalized method for retrieving effective parameters of anisotropic metamaterials,” Opt. Express 22(24), 29937–29953 (2014).
[Crossref] [PubMed]

2013 (6)

X. X. Liu and A. Alù, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B 87(23), 235136 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

H. Noh, S. M. Popoff, and H. Cao, “Broadband subwavelength focusing of light using a passive sink,” Opt. Express 21(15), 17435–17446 (2013).
[Crossref] [PubMed]

M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref] [PubMed]

G. Ramakrishnan, G. K. P. Ramanandan, A. J. L. Adam, M. Xu, N. Kumar, R. W. A. Hendrikx, and P. C. M. Planken, “Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals,” Opt. Express 21(14), 16784–16798 (2013).
[Crossref] [PubMed]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

2012 (6)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

S. Longhi and G. D. Valle, “Coherent perfect absorbers for transient, periodic, or chaotic optical fields: Time-reversed lasers beyond threshold,” Phys. Rev. A 85(5), 053838 (2012).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref] [PubMed]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
[Crossref] [PubMed]

V. Klimov, S. Sun, and G.-Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20(12), 13071–13081 (2012).
[Crossref] [PubMed]

2011 (7)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
[Crossref]

X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84(23), 235106 (2011).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

D. Torrent and J. Sánchez-Dehesa, “Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials,” New J. Phys. 13(9), 093018 (2011).
[Crossref]

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

2009 (1)

R. L. Chern and Y. T. Chen, “Effective parameters for photonic crystals with large dielectric contrast,” Phys. Rev. B 80(7), 075118 (2009).
[Crossref]

2008 (3)

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (4)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

S. D. Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32(11), 1483–1485 (2007).
[Crossref] [PubMed]

V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
[Crossref]

2006 (3)

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
[Crossref] [PubMed]

J. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
[Crossref] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

2002 (2)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

A. Yariv, “Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2001 (1)

R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
[Crossref]

1999 (1)

Ackert, J. J.

Adam, A. J. L.

Adam, S.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
[Crossref]

Agarwal, G. S.

Alù, A.

F. Monticone, C. A. Valagiannopoulos, and A. Alù, “Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging,” Phys. Rev. X 6(4), 041018 (2016).
[Crossref]

X. X. Liu and A. Alù, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B 87(23), 235136 (2013).
[Crossref]

X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84(23), 235106 (2011).
[Crossref]

Ambati, M.

V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
[Crossref]

Anwar, S.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Arenas, D.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Badsha, M. A.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

Bai, P.

J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
[Crossref]

Baranov, D. G.

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. (Berlin) 528(7-8), 537–542 (2016).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Bergman, K.

Bliokh, K. Y.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

Bliokh, Y. P.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

Bradley, M. S.

Bulovic, V.

Cao, H.

H. Noh, S. M. Popoff, and H. Cao, “Broadband subwavelength focusing of light using a passive sink,” Opt. Express 21(15), 17435–17446 (2013).
[Crossref] [PubMed]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Castanié, A.

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Chen, C. P.

Chen, H.

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Chen, J.

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Chen, Y. T.

R. L. Chern and Y. T. Chen, “Effective parameters for photonic crystals with large dielectric contrast,” Phys. Rev. B 80(7), 075118 (2009).
[Crossref]

Chern, R. L.

R. L. Chern and Y. T. Chen, “Effective parameters for photonic crystals with large dielectric contrast,” Phys. Rev. B 80(7), 075118 (2009).
[Crossref]

Chong, Y.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Dadap, J. I.

Dutta-Gupta, S.

Félix, S.

Feng, Q.

Fokin, V.

V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
[Crossref]

Freilikher, V.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Grote, R. R.

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Guo, C.

Guo, G.-Y.

Guo, Q. H.

Gupta, S. D.

Hang, Z. H.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Hendrikx, R. W. A.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hou, B.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Hu, C.

Hu, C.-L.

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

Huang, C.

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Hwangbo, C. K.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

Ignatov, A. I.

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. (Berlin) 528(7-8), 537–542 (2016).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jun, Y. C.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

Kang, M.

Kim, T. Y.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Klimov, V.

Knights, A. P.

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Kumar, N.

Lai, Y.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Lanagan, M.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, R. K.

Lee, S. Y.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

Li, H. Q.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Li, H.-Q.

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

Li, J.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref] [PubMed]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Li, S.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Li, S. C.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Li, T. F.

Linfield, E. H.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Liu, F.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
[Crossref]

M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref] [PubMed]

Liu, K.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X. X.

X. X. Liu and A. Alù, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B 87(23), 235136 (2013).
[Crossref]

Liu, X.-X.

X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84(23), 235106 (2011).
[Crossref]

Longhi, S.

S. Longhi and G. D. Valle, “Coherent perfect absorbers for transient, periodic, or chaotic optical fields: Time-reversed lasers beyond threshold,” Phys. Rev. A 85(5), 053838 (2012).
[Crossref]

S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
[Crossref]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Lu, W.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Lu, W. X.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Luo, J.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Luo, X.

Ma, X.

MacDonald, K. F.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Martin, O. J. F.

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Maurel, A.

Mercier, J.-F.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mittra, R.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monticone, F.

F. Monticone, C. A. Valagiannopoulos, and A. Alù, “Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging,” Phys. Rev. X 6(4), 041018 (2016).
[Crossref]

Naftaly, M.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Nechepurenko, I. A.

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. (Berlin) 528(7-8), 537–542 (2016).
[Crossref]

Nino, J. C.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Noh, H.

H. Noh, S. M. Popoff, and H. Cao, “Broadband subwavelength focusing of light using a passive sink,” Opt. Express 21(15), 17435–17446 (2013).
[Crossref] [PubMed]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

Osgood, R. M.

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pendry, J.

J. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
[Crossref] [PubMed]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Planken, P. C. M.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Polini, M.

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
[Crossref]

Popoff, S. M.

Powell, D. A.

X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84(23), 235106 (2011).
[Crossref]

Pu, M.

Qin, S.

Rajab, K. Z.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Ramakrishnan, G.

Ramanandan, G. K. P.

Rothenberg, J. M.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sánchez-Dehesa, J.

D. Torrent and J. Sánchez-Dehesa, “Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials,” New J. Phys. 13(9), 093018 (2011).
[Crossref]

Savel’ev, S.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

Scherer, A.

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

Shen, M. R.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Sheng, P.

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Sihvola, A.

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Song, J. Z.

J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Stone, A. D.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Sun, C.

V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
[Crossref]

Sun, S.

Sun, Y.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Tan, W.

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

Tanner, D.

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Tischler, J. R.

Torrent, D.

D. Torrent and J. Sánchez-Dehesa, “Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials,” New J. Phys. 13(9), 093018 (2011).
[Crossref]

Valagiannopoulos, C. A.

F. Monticone, C. A. Valagiannopoulos, and A. Alù, “Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging,” Phys. Rev. X 6(4), 041018 (2016).
[Crossref]

Valle, G. D.

S. Longhi and G. D. Valle, “Coherent perfect absorbers for transient, periodic, or chaotic optical fields: Time-reversed lasers beyond threshold,” Phys. Rev. A 85(5), 053838 (2012).
[Crossref]

Walser, R. M.

R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, C.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref] [PubMed]

Wang, C. H.

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

Wang, M.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Wu, Y.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Y. Wu, “A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal,” Opt. Express 22(2), 1906–1917 (2014).
[Crossref] [PubMed]

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Xu, M.

Xu, Y.

Yariv, A.

A. Yariv, “Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[Crossref] [PubMed]

Ye, W.

Yoon, J.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

Yuan, X.

Zhang, J.

Zhang, X.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
[Crossref]

Zhang, Z. Q.

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Zhang, Z. R.

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

Zhao, Z.

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhou, P.

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

Zhu, Z.

2D Mater (1)

F. Liu, Y. D. Chong, S. Adam, and M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” 2D Mater 1(3), 031001 (2014).
[Crossref]

ACS Nano (1)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Ann. Phys. (Berlin) (1)

A. I. Ignatov, I. A. Nechepurenko, and D. G. Baranov, “Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons,” Ann. Phys. (Berlin) 528(7-8), 537–542 (2016).
[Crossref]

EPL (1)

Z. R. Zhang, H.-Q. Li, H. Chen, C.-L. Hu, and P. Zhou, “Coherent perfect absorption in one-dimensional photonic crystal with a PT-symmetric defect,” EPL 105(4), 47008 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Yariv, “Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. Micro. Elect. Pack. (1)

K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, R. Mittra, and M. Lanagan, “Broadband Dielectric Characterization of Aluminum Oxide (Al2O3),” J. Micro. Elect. Pack. 5, 101–106 (2008).

Light Sci. Appl. (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1(7), e18 (2012).
[Crossref]

Metamaterials (Amst.) (1)

A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials (Amst.) 1(1), 2–11 (2007).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Mater. (3)

J. Pendry, “Photonics: metamaterials in the sunshine,” Nat. Mater. 5(8), 599–600 (2006).
[Crossref] [PubMed]

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

New J. Phys. (2)

D. Torrent and J. Sánchez-Dehesa, “Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials,” New J. Phys. 13(9), 093018 (2011).
[Crossref]

J. Z. Song, P. Bai, Z. H. Hang, and Y. Lai, “Acoustic coherent perfect absorbers,” New J. Phys. 16(3), 033026 (2014).
[Crossref]

Opt. Express (8)

G. Ramakrishnan, G. K. P. Ramanandan, A. J. L. Adam, M. Xu, N. Kumar, R. W. A. Hendrikx, and P. C. M. Planken, “Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals,” Opt. Express 21(14), 16784–16798 (2013).
[Crossref] [PubMed]

J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
[Crossref] [PubMed]

V. Klimov, S. Sun, and G.-Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20(12), 13071–13081 (2012).
[Crossref] [PubMed]

S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
[Crossref] [PubMed]

H. Noh, S. M. Popoff, and H. Cao, “Broadband subwavelength focusing of light using a passive sink,” Opt. Express 21(15), 17435–17446 (2013).
[Crossref] [PubMed]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref] [PubMed]

A. Castanié, J.-F. Mercier, S. Félix, and A. Maurel, “Generalized method for retrieving effective parameters of anisotropic metamaterials,” Opt. Express 22(24), 29937–29953 (2014).
[Crossref] [PubMed]

Y. Wu, “A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal,” Opt. Express 22(2), 1906–1917 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (2)

S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
[Crossref]

S. Longhi and G. D. Valle, “Coherent perfect absorbers for transient, periodic, or chaotic optical fields: Time-reversed lasers beyond threshold,” Phys. Rev. A 85(5), 053838 (2012).
[Crossref]

Phys. Rev. B (7)

S. C. Li, J. Luo, S. Anwar, S. Li, W. X. Lu, Z. H. Hang, Y. Lai, B. Hou, M. R. Shen, and C. H. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev. B 91(22), 220301 (2015).
[Crossref]

X. X. Liu and A. Alù, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B 87(23), 235136 (2013).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

R. L. Chern and Y. T. Chen, “Effective parameters for photonic crystals with large dielectric contrast,” Phys. Rev. B 80(7), 075118 (2009).
[Crossref]

V. Fokin, M. Ambati, C. Sun, and X. Zhang, “Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76(14), 144302 (2007).
[Crossref]

X.-X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84(23), 235106 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, “Experimental demonstration of a coherent perfect absorber with PT phase transition,” Phys. Rev. Lett. 112(14), 143903 (2014).
[Crossref] [PubMed]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Y. D. Chong and A. D. Stone, “Hidden black: coherent enhancement of absorption in strongly scattering media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Monticone, C. A. Valagiannopoulos, and A. Alù, “Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging,” Phys. Rev. X 6(4), 041018 (2016).
[Crossref]

Proc. SPIE (1)

R. M. Walser, “Electromagnetic metamaterials,” Proc. SPIE 4467, 1–15 (2001).
[Crossref]

Rev. Mod. Phys. (2)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[Crossref]

Sci. Rep. (3)

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,” Sci. Rep. 6, 22941 (2016).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4, 7369 (2014).
[Crossref] [PubMed]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Supplementary Material (6)

NameDescription
» Visualization 1: AVI (949 KB)      CPA for a homogeneous slab with a small incident angle
» Visualization 2: AVI (2110 KB)      CPA for a metamaterial absorber with small incident angle
» Visualization 3: AVI (1164 KB)      CPA for a homogeneous slab with a large incident angle
» Visualization 4: AVI (2508 KB)      CPA for a metamaterial absorber with large incident angle
» Visualization 5: AVI (3682 KB)      Metamaterial coherent point source absorber
» Visualization 6: AVI (3629 KB)      Slab coherent point source absorber

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the CPA. The absorber is made of a lossy slab (layer 2) whose thickness is L 2 . Two coherent and monochromatic waves with the same incident angle, θ, are illuminated from the background medium (layers 1 and 3). They propagate towards the absorber and are absorbed.

Fig. 3
Fig. 3

The flowcharts of the design process for (a) θ 20 ° where | k 2 | is small and (b) θ> 20 ° where | k 2 | is large. In the former, the optimization starts with the metamaterial predicted by AEMT; in the latter, the optimization starts with the optimized metamaterial absorbers obtained at a smaller angle, θ'<θ .

Fig. 4
Fig. 4

The designed metamaterial absorbers at different incident angles, θ, featured with (a) the real and imaginary parts of the dielectric constants, ε s (red curves with solid circles and squares) and ε s opt (black curves with hollow circles and squares), and (b) the semi-major axes, a s (red curve with solid circles) and a s opt (black curve with hollow circles) and the semi-minor axes, b s (red curve with solid squares) and b s opt (black curve with hollow squares).

Fig. 5
Fig. 5

Performance of the metamaterial absorbers. (a) (Corresponding to Visualization 1) Simulated electric field distribution for the uniform absorber slab with parameters of ε 2 =0.0364+i0.0289 , μ 2x =0.6555+i0.3881 and μ 2y =0.0192+i0.2045 at the incident angle of θ= 5 ° . Clearly observed is the perfect preservation of the plane wave fronts, indicating that the scattering is completely suppressed and the incident energy is totally absorbed. (b) (Corresponding to Visualization 2) The same as (a), but with the uniform slab replaced by the metamaterial absorber with parameters ε s opt =13.61+i1.03 , a s opt =0.202l and b s opt =0.153l . Good agreement between (a) and (b) is seen. Further evidence is demonstrated in (c) and (d) where the uniform distributions of | E z | 2 are seen in both layers 1 and 3, implying total absorption. (e)-(h) Respectively the same as (a)-(d), but with the absorbers corresponding to those at θ= 25 ° , whose parameters are ε eff =0.0827+i0.0328 , μ eff,x =0.3528+i0.3420 and μ eff,y =0.3887+i0.2285 for the uniform slab and ε s opt =12.59+i1.39 , a s opt =0.220l and b s opt =0.161l for the metamaterial slab. Total absorption is observed again. (e) and (f) correspond to Visualization 3 and Visualization 4, respectively. (i) Quantitative study of the coherent absorption, A c , as functions of the incident angle, θ. Curves and symbols indicate results of uniform and metamaterial absorbers, respectively. The absorption at different incident angles is calculated with different absorbers whose parameters are shown in Fig. 4. To further demonstrate the absorption performance, 1 A c is also plotted in logarithmic scale.

Fig. 6
Fig. 6

Demonstration of a coherent point source absorber integrated by the metamaterial absorbers that cover the angles up to 30 . (a) The setup of the point source absorber. Thirteen absorbers designed at different incident angles are integrated to form the point source absorber. Two coherent point sources radiate at the distance of d=22.5170b away from the left and right edges of the absorber. For comparison, the electric field distribution of the two point sources radiating in air is shown in (b). Strong interference pattern is observed. (c) (Corresponding to Visualization 5) The same as (b), but with the presence of the metamaterial absorber. It is clearly seen that the cylindrical wave fronts are perfectly restored, suggesting that the energy emanating on the absorber has been totally absorbed. (d) (Corresponding to Visualization 6) The same as (c), but with the uniform absorber replacing the metamaterial absorber. Good agreement between (c) and (d) is seen.

Tables (1)

Tables Icon

Table 1 The material parameters ( ε s opt ) and geometric parameters ( a s opt and b s opt ) of the metamaterial absorbers at different incident angles. The corresponding effective medium parameters ( ε eff , μ eff,x and μ eff,y ) are also listed.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E z ={ e i k 1y y ( α 1 e i k 1x x + β 1 e i k 1x x ), x0,y0 e i k 2y y ( α 2 e i k 2x x + β 2 e i k 2x x ), 0x L 2 ,y0 e i k 3y y ( α 3 e i k 3x (x L 2 ) + β 3 e i k 3x (x L 2 ) ), x L 2 ,y0
H =( H x , H y ,0 )= 1 iω ( μ ) 1 × E ,
( β 1 α 3 )=S( α 1 β 3 ).
A c =1 | β 1 | 2 + | α 3 | 2 | α 1 | 2 + | β 3 | 2 .
β 1 =0, and α 3 =0,
k 2x 2 μ 2y + k 2y 2 μ 2x = k 1 2 ε 2 ,
ε 2 +2 ε 0 J e0 ( q 0 ; ξ 0 ) k 0 2 a 0 b 0 J e0 ( q 0 ; ξ 0 ) ε 2 +2 ε 0 Y e0 ( q 0 ; ξ 0 ) k 0 2 a 0 b 0 Y e0 ( q 0 ; ξ 0 ) = Y e0 ( q 0 ; ξ 0 ) i J e0 ( q 0 ; ξ 0 ) D e0 (0) 1+ D e0 (0) ,
μ 2x μ 0 a 0 J o1 ( q 0 ; ξ 0 ) b 0 J ' o1 ( q 0 ; ξ 0 ) μ 2x μ 0 a 0 Y o1 ( q 0 ; ξ 0 ) b 0 Y ' o1 ( q 0 ; ξ 0 ) = Y ' o1 ( q 0 ; ξ 0 ) iJ ' o1 ( q 0 ; ξ 0 ) D o1 (0) 1+ D o1 (0) ,
μ 2y μ 0 b 0 J e1 ( q 0 ; ξ 0 ) a 0 J ' e1 ( q 0 ; ξ 0 ) μ 2y μ 0 b 0 Y e1 ( q 0 ; ξ 0 ) a 0 Y ' e1 ( q 0 ; ξ 0 ) = Y ' e1 ( q 0 ; ξ 0 ) iJ ' e1 ( q 0 ; ξ 0 ) D e1 (0) 1+ D e1 (0) ,
T= 4 Z eff ( 1+ Z eff ) 2 e i n eff kL ( 1 Z eff ) 2 e i n eff kL ,
R= ( 1 Z eff 2 )( e i n eff kL e i n eff kL ) ( 1+ Z eff ) 2 e i n eff kL ( 1 Z eff ) 2 e i n eff kL ,
n eff k eff,x k = ε eff μ eff,y μ eff,y sin 2 θ μ eff,x and Z eff = μ eff,y cosθ n eff .
n eff = i kL [ log( 1 R 2 + T 2 +Δ 2T )+2imπ ].
Z eff = Δ ( 1R ) 2 T 2 ,
Δ± ( 1 R 2 + T 2 ) 2 4 T 2 .
α 1 e i k 1y y + β 1 e i k 1y y = α 2 e i k 2y y + β 2 e i k 2y y , k 1x ω μ 1 ( α 1 e i k 1y y β 1 e i k 1y y )= k 2x ω μ 2y ( α 2 e i k 2y y β 2 e i k 2y y ),
α 2 e i k 2x L 2 e i k 2y y + β 2 e i k 2x L 2 e i k 2y y = α 3 e i k 3y y + β 3 e i k 3y y , k 2x ω μ 2y ( α 2 e i k 2x L 2 e i k 2y y β 2 e i k 2x L 2 e i k 2y y )= k 3x ω μ 3 ( α 3 e i k 3y y β 3 e i k 3y y ),
( β 1 α 3 )=S( α 1 β 3 ),
S 11 = ( k 3x μ 2y k 2x μ 3 )( k 2x μ 1 + k 1x μ 2y ) e 2i k 2x L 2 +( k 3x μ 2y + k 2x μ 3 )( k 2x μ 1 k 1x μ 2y ) ( k 3x μ 2y k 2x μ 3 )( k 2x μ 1 k 1x μ 2y ) e 2i k 2x L 2 +( k 3x μ 2y + k 2x μ 3 )( k 2x μ 1 + k 1x μ 2y ) ,
S 21 = 4 k 3x k 2x μ 2y μ 1 e i k 2x L 2 ( k 3x μ 2y k 2x μ 3 )( k 2x μ 1 k 1x μ 2y ) e 2i k 2x L 2 +( k 3x μ 2y + k 2x μ 3 )( k 2x μ 1 + k 1x μ 2y ) ,
S 21 = S 12 ,
S 22 = S 11 .

Metrics