Abstract

We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides

Javier G. Ajates, Javier R. Vázquez de Aldana, Feng Chen, and Airán Ródenas
Opt. Mater. Express 8(7) 1890-1901 (2018)

Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals

Ruiyun He, Qiang An, Javier R. Vázquez de Aldana, Qingming Lu, and Feng Chen
Appl. Opt. 52(16) 3713-3718 (2013)

Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica

Luís A. Fernandes, Jason R. Grenier, Peter R. Herman, J. Stewart Aitchison, and Paulo V. S. Marques
Opt. Express 20(22) 24103-24114 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [Crossref]
  2. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [Crossref]
  3. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  4. R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3(9), 1378–1384 (2013).
    [Crossref]
  5. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appls. Phys. A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  6. H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express 21(14), 17122–17130 (2013).
    [Crossref] [PubMed]
  7. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  8. S. Heidmann, N. Courjal, and G. Martin, “Double polarization active Y junctions in the L band, based on Ti:LiNbO3 lithium niobate waveguides: polarization and contrast performances,” Opt. Lett. 37(16), 3318–3320 (2012).
    [Crossref] [PubMed]
  9. G. Martin, S. Heidmann, J.-Y. Rauch, L. Jocou, and N. Courjal, “Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry,” Opt. Eng. 53(3), 034101 (2014).
    [Crossref]
  10. F. Thomas, S. Heidmann, M. de Mengin, N. Courjal, G. Ulliac, A. Morand, P. Benech, E. Le Coarer, and G. Martin, “First Results in Near and Mid IR Lithium Niobate-Based Integrated Optics Interferometer Based on SWIFTS-Lippmann Concept,” J. Lightwave Technol. 32(22), 3736–3742 (2014).
    [Crossref]
  11. D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
    [Crossref]
  12. D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25(6), 1588–1593 (2007).
    [Crossref]
  13. G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
    [Crossref] [PubMed]
  14. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
    [Crossref]
  15. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
    [Crossref]
  16. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag, 2012).
  17. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
    [Crossref]
  18. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [Crossref]
  19. A. Ródenas, “Direct femtosecond laser writing of 3D photonic structures in rare-earth doped lithium niobate,” (Universidad Autónoma de Madrid, 2009).
  20. H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
    [Crossref] [PubMed]
  21. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [Crossref] [PubMed]
  22. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
    [Crossref] [PubMed]
  23. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
    [Crossref]
  24. Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express 3(4), 466–471 (2013).
    [Crossref]
  25. A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
    [Crossref]
  26. B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
    [Crossref] [PubMed]
  27. H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Optimisation of microstructured waveguides in z-cut LiNbO3 crystals,” Opt. Mater. Express 4(3), 541–552 (2014).
    [Crossref]
  28. R. He, Q. An, J. R. Vázquez de Aldana, Q. Lu, and F. Chen, “Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals,” Appl. Opt. 52(16), 3713–3718 (2013).
    [Crossref] [PubMed]
  29. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide –doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  30. S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23(6), 7946–7956 (2015).
    [Crossref] [PubMed]
  31. J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
    [Crossref]
  32. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation,” J. Appl. Phys. 107(3), 033522 (2010).
    [Crossref]
  33. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
    [Crossref]
  34. A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Taylor & Francis Ltd, 1990).
  35. A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

2014 (3)

2013 (4)

2012 (3)

2011 (1)

2010 (2)

2009 (4)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

2008 (1)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[Crossref]

2007 (4)

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appls. Phys. A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25(6), 1588–1593 (2007).
[Crossref]

2006 (3)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

1997 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Aguiló, M.

An, Q.

Aschieri, P.

Baldi, P.

Bassi, P.

Bellanca, G.

Bellouard, Y.

Benayas, A.

Benech, P.

Bentini, G. G.

Bianconi, M.

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Boscolo, S.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appls. Phys. A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Cantelar, E.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[Crossref]

Castaldini, D.

Castillo-Vega, G. R.

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chen, F.

Chen, K. P.

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation,” J. Appl. Phys. 107(3), 033522 (2010).
[Crossref]

Chiarini, M.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Courjal, N.

de Aza, A. H.

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

de Mengin, M.

De Micheli, M. P.

De Nicola, P.

Díaz, F.

Dubov, M.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Gross, S.

Gu, M.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[Crossref]

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

He, R.

Heidmann, S.

Hu, J.

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Ireland, M.

Jacinto, C.

Jaque, D.

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation,” J. Appl. Phys. 107(3), 033522 (2010).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[Crossref]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[Crossref]

Jaque, F.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jia, Y.

Jocou, L.

G. Martin, S. Heidmann, J.-Y. Rauch, L. Jocou, and N. Courjal, “Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry,” Opt. Eng. 53(3), 034101 (2014).
[Crossref]

Jovanovic, N.

Jundt, D.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Kaminskii, A. A.

Kar, A. K.

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Karakuzu, H.

Lamela, J.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Lawrence, J.

Le Coarer, E.

Lifante, G.

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[Crossref]

Liu, H.

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Lu, Q.

Maestro, L. M.

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Martin, G.

Martínez, J.

Martínez de Mendívil, J.

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

Mazhirina, Y. A.

McMillen, B.

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
[Crossref] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation,” J. Appl. Phys. 107(3), 033522 (2010).
[Crossref]

Melnikov, L. A.

Menin, A.

Menyuk, C. R.

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

Montanari, G. B.

Morand, A.

Nguyen, H. D.

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appls. Phys. A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Nubile, A.

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Parini, A.

Pena, P.

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

Peña, J. I.

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Pujol, M. C.

Ramirez, M.

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Rauch, J.-Y.

G. Martin, S. Heidmann, J.-Y. Rauch, L. Jocou, and N. Courjal, “Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry,” Opt. Eng. 53(3), 034101 (2014).
[Crossref]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Ren, Y.

Rodenas, A.

Ródenas, A.

H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[Crossref]

Roso, L.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

Sharp, A.

Silva, W. F.

Small, D. L.

Sola, D.

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

Sugliani, S.

Tascu, S.

Thomas, F.

Thomson, R. R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Torchia, G. A.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appls. Phys. A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Ulliac, G.

Vázquez de Aldana, J. R.

H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

Q. An, Y. Ren, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express 3(4), 466–471 (2013).
[Crossref]

R. He, Q. An, J. R. Vázquez de Aldana, Q. Lu, and F. Chen, “Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals,” Appl. Opt. 52(16), 3713–3718 (2013).
[Crossref] [PubMed]

R. He, Q. An, Y. Jia, G. R. Castillo-Vega, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond laser micromachining of lithium niobate depressed cladding waveguides,” Opt. Mater. Express 3(9), 1378–1384 (2013).
[Crossref]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[Crossref] [PubMed]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

Withford, M. J.

Zelmon, D. E.

Zhou, G.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[Crossref]

Adv. Opt. Photonics (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[Crossref]

Appl. Phys. Lett. (4)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to the three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77(1), 109–111 (2003).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

Appls. Phys. A Mater. Sci. Process. (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser structured LiNbO3,” Appls. Phys. A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Appl. Phys. (4)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[Crossref]

J. Martínez de Mendívil, D. Sola, J. R. Vázquez de Aldana, G. Lifante, A. H. de Aza, P. Pena, and J. I. Peña, “Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions,” J. Appl. Phys. 117(4), 043104 (2015).
[Crossref]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation,” J. Appl. Phys. 107(3), 033522 (2010).
[Crossref]

A. Ródenas, L. M. Maestro, M. Ramirez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106(1), 013110 (2009).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

G. Martin, S. Heidmann, J.-Y. Rauch, L. Jocou, and N. Courjal, “Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry,” Opt. Eng. 53(3), 034101 (2014).
[Crossref]

Opt. Express (7)

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express 21(14), 17122–17130 (2013).
[Crossref] [PubMed]

S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, and M. J. Withford, “Low loss mid-infrared ZBLAN waveguides for future astronomical applications,” Opt. Express 23(6), 7946–7956 (2015).
[Crossref] [PubMed]

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23(1), 86–100 (2015).
[Crossref] [PubMed]

H. D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (3)

Other (3)

A. Ródenas, “Direct femtosecond laser writing of 3D photonic structures in rare-earth doped lithium niobate,” (Universidad Autónoma de Madrid, 2009).

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Taylor & Francis Ltd, 1990).

R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Propagation losses for TM mode of CLW2Rs fabricated by different pulse energies and scanning velocities. Lines joining experimental points are added only as visual help.
Fig. 2
Fig. 2 Waveguide performances with respect to different heat treatments. PLs of the waveguides for TM polarization (upper graph) and TE polarization (lower graph). Lines joining experimental points are added only as visual help.
Fig. 3
Fig. 3 Theoretical FEM and experimental PL values of the waveguide 750_wg8 versus the thermal annealing temperature. TE (blue graphs) and TM (red graphs) are both considered. The waveguide does not guide after treatment at 1173K. Lines joining experimental points are added only as visual help.
Fig. 4
Fig. 4 Theoretical FEM and experimental MFD values of the waveguide 750_wg8 versus the thermal annealing temperature. TE (blue graphs) and TM (red graphs) are both considered. The MFD values are not calculated when either the waveguide is multimode or not guided. The error bar is ± 3 μm. Lines joining experimental points are added only as visual help.
Fig. 5
Fig. 5 Width of the laser-damage tracks and the induced stress in the cladding structure under different thermal annealing for waveguide 750_wg8.
Fig. 6
Fig. 6 Index contrast ∆ny (red line) and ∆nz (blue line) between the fs laser-modified tracks and the bulk material of the waveguide 750_wg8 when experienced thermal annealing process.
Fig. 7
Fig. 7 Index profiles including the changes of ordinary ∆ny (a) and extraordinary ∆nz (b) indices of the waveguide 750_wg8 after thermal treatment of 773K. The refractive index changes inside tracks are ∆ny = −0.01 and ∆nz = −0.016.
Fig. 8
Fig. 8 Simulation and experiment of the CLW 750_wg8: Comparison of near field TE and TM modes at 3.68 µm wavelength. Interference fringes in the measured mode images are due to back-reflections in the optical guiding imaging system.

Tables (1)

Tables Icon

Table 1 Propagation losses of the CLW2Rs fabricated with different laser conditions

Metrics