Abstract

We demonstrated a scheme to spectrally combine two high power, broad-linewidth single beams using a steep edge filter as the combining element. 10.12 kW combined output power is achieved with a beam quality of M2x = 11.4 and M2y = 10.4. To the best of our knowledge, this is the highest output power ever reported for the filter based SBC system. Despite the broad emission spectrum of the single channel, the combining efficiency is measured to be 98.9%, which proves the high efficiency of the filter for both the reflection and transmission cases. A detail analysis of the thermal behavior is carried out to aid in the optimization of the beam quality. This SBC system permits the efficient combining of the beams with broad linewidth and provides another approach to achieve a combined output beam beyond 10 kW level.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation

Ye Zheng, Yifeng Yang, Jianhua Wang, Man Hu, Guangbo Liu, Xiang Zhao, Xiaolong Chen, Kai Liu, Chun Zhao, Bing He, and Jun Zhou
Opt. Express 24(11) 12063-12071 (2016)

High-power spectral beam combining of linearly polarized Tm:fiber lasers

Lawrence Shah, R. Andrew Sims, Pankaj Kadwani, Christina C.C. Willis, Joshua B. Bradford, Alex Sincore, and Martin Richardson
Appl. Opt. 54(4) 757-762 (2015)

Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum

Fan Chen, Jun Ma, Rihong Zhu, Qun Yuan, Wenchao Zhou, Junhong Su, Junqi Xu, and Shaohua Pan
Appl. Opt. 56(10) 2574-2579 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
    [Crossref]
  2. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
    [Crossref] [PubMed]
  3. L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, “High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage,” Opt. Express 25(7), 7530–7537 (2017).
    [Crossref] [PubMed]
  4. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
    [Crossref] [PubMed]
  5. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  6. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
    [Crossref]
  7. C. Jauregui, H. J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
    [Crossref] [PubMed]
  8. J. Cui, H. Dang, K. Feng, W. Yang, T. Geng, Y. Hu, Y. Zhang, D. Jiang, X. Chen, and J. Tan, “Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser,” Photon. Res. 5(3), 233–238 (2017).
    [Crossref]
  9. J. O. White, M. Harfouche, J. Edgecumbe, N. Satyan, G. Rakuljic, V. Jayaraman, C. Burgner, and A. Yariv, “1.6 kW Yb fiber amplifier using chirped seed amplification for stimulated Brillouin scattering suppression,” Appl. Opt. 56(3), B116–B122 (2017).
    [Crossref] [PubMed]
  10. S. Loranger, V. Lambin-Iezzi, M. Wahbeh, and R. Kashyap, “Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber,” Opt. Lett. 41(8), 1797–1800 (2016).
    [Crossref] [PubMed]
  11. Q. Li, H. Zhang, X. Shen, P. Yan, H. Hao, and M. Gong, “Stimulated Raman scattering threshold for partially coherent light in silica fibers,” Opt. Express 23(22), 28438–28448 (2015).
    [Crossref] [PubMed]
  12. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  13. A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).
  14. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (Invited),” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
    [Crossref]
  15. S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
    [Crossref] [PubMed]
  16. P. Ma, R. Tao, X. Wang, Y. Ma, R. Su, and P. Zhou, “Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime,” Opt. Express 22(4), 4123–4130 (2014).
    [Crossref] [PubMed]
  17. H. Meng, T. Sun, H. Tan, J. Yu, W. Du, F. Tian, J. Li, S. Gao, X. Wang, and D. Wu, “High-brightness spectral beam combining of diode laser array stack in an external cavity,” Opt. Express 23(17), 21819–21824 (2015).
    [Crossref] [PubMed]
  18. Z. Zhu, L. Gou, M. Jiang, Y. Hui, H. Lei, and Q. Li, “High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining,” Opt. Express 22(15), 17804–17809 (2014).
    [Crossref] [PubMed]
  19. Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
    [Crossref] [PubMed]
  20. D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
    [Crossref] [PubMed]
  21. F. Prevost, L. Lombard, J. Primot, L. P. Ramirez, L. Bigot, G. Bouwmans, and M. Hanna, “Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier,” Opt. Express 25(9), 9528–9534 (2017).
    [Crossref] [PubMed]
  22. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
    [Crossref] [PubMed]
  23. E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
    [Crossref]
  24. K. Regelskis, K. Hou, G. Raciukaitis, and A. Galvanauskas, “Spatial dispersion-free spectral beam combining of high power pulsed Yb-doped fiber lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMA4.
    [Crossref]
  25. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett. 35(10), 1542–1544 (2010).
    [Crossref] [PubMed]
  26. A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22(15), 17735–17744 (2014).
    [Crossref] [PubMed]
  27. W. Shi, E. B. Petersen, Z. Yao, D. T. Nguyen, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett. 35(14), 2418–2420 (2010).
    [Crossref] [PubMed]
  28. H. Lü, P. Zhou, X. Wang, and Z. Jiang, “Theoretical and Numerical Study of the Threshold of Stimulated Brillouin Scattering in Multimode fibers,” J. Lightwave Technol. 33(21), 4464–4470 (2015).
    [Crossref]
  29. O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tünnermann, “Spectral beam combination of fiber amplified ns-pulses by means of interference filters,” Opt. Express 17(25), 22974–22982 (2009).
    [Crossref] [PubMed]
  30. J. M. Eastman, “Scattering in all-dielectric multilayer bandpass filters and mirrors for lasers,” in Physics of Thin Films, G. Hass and H. M. Francombe, eds. (Academic, 1978), Vol. 10, p. 167.
  31. C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18(2), 104–115 (1979).
    [Crossref]
  32. F. Chen, J. Ma, R. Zhu, Q. Yuan, W. Zhou, J. Su, J. Xu, and S. Pan, “Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum,” Appl. Opt. 56(10), 2574–2579 (2017).
    [Crossref] [PubMed]
  33. A. Jin, J. Hou, B. Zhang, H. Chen, and Z. Jiang, “Theoretical models for beam quality evaluation of fiber supercontinuum sources,” Opt. Express 21(11), 13459–13466 (2013).
    [Crossref] [PubMed]
  34. S. Pan, J. Ma, R. Zhu, T. Ba, C. Zuo, F. Chen, J. Dou, C. Wei, and W. Zhou, “Real-time complex amplitude reconstruction method for beam quality M2 factor measurement,” Opt. Express 25(17), 20142–20155 (2017).
    [Crossref] [PubMed]
  35. Y. Qiu, L. Huang, M. Gong, L. Qiang, P. Yan, and H. Zhang, “Method to evaluate beam quality of Gaussian beams with aberrations,” Appl. Opt. 51(27), 6539–6543 (2012).
    [Crossref] [PubMed]
  36. P. Zhou, Z. Liu, X. Xu, and Z. Chen, “Numerical analysis of the effects of aberrations on coherently combined fiber laser beams,” Appl. Opt. 47(18), 3350–3359 (2008).
    [Crossref] [PubMed]

2017 (9)

J. O. White, M. Harfouche, J. Edgecumbe, N. Satyan, G. Rakuljic, V. Jayaraman, C. Burgner, and A. Yariv, “1.6 kW Yb fiber amplifier using chirped seed amplification for stimulated Brillouin scattering suppression,” Appl. Opt. 56(3), B116–B122 (2017).
[Crossref] [PubMed]

P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
[Crossref]

Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
[Crossref] [PubMed]

F. Chen, J. Ma, R. Zhu, Q. Yuan, W. Zhou, J. Su, J. Xu, and S. Pan, “Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum,” Appl. Opt. 56(10), 2574–2579 (2017).
[Crossref] [PubMed]

L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, “High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage,” Opt. Express 25(7), 7530–7537 (2017).
[Crossref] [PubMed]

F. Prevost, L. Lombard, J. Primot, L. P. Ramirez, L. Bigot, G. Bouwmans, and M. Hanna, “Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier,” Opt. Express 25(9), 9528–9534 (2017).
[Crossref] [PubMed]

J. Cui, H. Dang, K. Feng, W. Yang, T. Geng, Y. Hu, Y. Zhang, D. Jiang, X. Chen, and J. Tan, “Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser,” Photon. Res. 5(3), 233–238 (2017).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

S. Pan, J. Ma, R. Zhu, T. Ba, C. Zuo, F. Chen, J. Dou, C. Wei, and W. Zhou, “Real-time complex amplitude reconstruction method for beam quality M2 factor measurement,” Opt. Express 25(17), 20142–20155 (2017).
[Crossref] [PubMed]

2016 (6)

C. Jauregui, H. J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

S. Loranger, V. Lambin-Iezzi, M. Wahbeh, and R. Kashyap, “Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber,” Opt. Lett. 41(8), 1797–1800 (2016).
[Crossref] [PubMed]

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
[Crossref] [PubMed]

D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
[Crossref] [PubMed]

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

2015 (3)

2014 (5)

2013 (1)

2012 (1)

2010 (2)

2009 (2)

2008 (1)

2007 (2)

S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (Invited),” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
[Crossref]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

1979 (1)

C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18(2), 104–115 (1979).
[Crossref]

Afzal, R. S.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Ahn, H.

Augst, S. J.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (Invited),” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
[Crossref]

Ba, T.

Beier, F.

Bigot, L.

Bouwmans, G.

Brar, K.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Breitkopf, S.

Brückner, F.

Burgner, C.

Carniglia, C. K.

C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18(2), 104–115 (1979).
[Crossref]

Cha, S.

Chann, B.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Chavez-Pirson, A.

Chen, F.

Chen, H.

Chen, X.

Chen, Z.

Churn, K. S.

Clausnitzer, T.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Creedon, K. J.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Cui, J.

Dajani, I.

Daneu, V.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Dang, H.

Dou, J.

Du, W.

Eberhardt, R.

Edgecumbe, J.

Fan, T. Y.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (Invited),” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

Feng, K.

Flores, A.

Gao, S.

Geisler, D. J.

Geng, C.

Geng, T.

Georges, P.

Gitkind, N.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Gong, M.

Goodno, G. D.

Gopinath, J. T.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Gou, L.

Gowin, M.

Goyal, A. K.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Guichard, F.

Haarlammert, N.

Hamilton, S. A.

Hanna, M.

Hao, H.

Harfouche, M.

He, B.

Hein, S.

Henrie, J.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Honea, E.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Hou, J.

Hu, D.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Hu, M.

Hu, Y.

Huang, L.

Huang, R.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Hui, Y.

Humphreys, R.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Hupel, C.

Jander, D.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Jauregui, C.

Jayaraman, V.

Jiang, D.

Jiang, M.

Jiang, Z.

Jin, A.

Jones, A. M.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Jung, M.

Kashyap, R.

Kasinadhuni, R.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Kong, H. J.

Kuhn, S.

Kurz, N.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Lambin-Iezzi, V.

Lanari, A.

Lavenu, L.

Lee, H.

Lei, H.

Leng, J.

Li, F.

Li, J.

Li, Q.

Li, X.

Liem, A.

Limpert, J.

Liu, G.

Liu, K.

Liu, Z.

Lombard, L.

Loranger, S.

Lü, H.

Ludewigt, K.

Ma, J.

Ma, P.

Ma, Y.

McComb, T. S.

McNaught, S. J.

Meng, H.

Mottay, E.

Natile, M.

Nguyen, D. T.

Nodop, D.

Nold, J.

Oh, J.

Otto, H. J.

Pan, S.

Park, S.

Peschel, T.

Petersen, E. B.

Peyghambarian, N.

Prevost, F.

Primot, J.

Proske, F.

Qiang, L.

Qiu, Y.

Rakuljic, G.

Ramirez, L. P.

Ranka, J. K.

Robin, C.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22(15), 17735–17744 (2014).
[Crossref] [PubMed]

Robinson, B. S.

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Rothenberg, J. E.

Sanchez, A.

Sanchez-Rubio, A.

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Sattler, B.

Satyan, N.

Savage-Leuchs, M.

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Schieler, C. M.

Schmidt, O.

Schreiber, T.

Shen, X.

Shi, W.

Stephen, M. A.

Stevens, M. L.

Su, J.

Su, R.

Sun, T.

Tan, H.

Tan, J.

Tao, R.

ten Have, E.

Thielen, P. A.

Tian, F.

Tsybin, I.

Tünnermann, A.

Wahbeh, M.

Wang, J.

Wang, X.

Weber, M. E.

Wei, C.

White, J. O.

Wickham, M. G.

Wirth, C.

Wu, D.

Xiao, H.

Xu, J.

Xu, X.

Yan, P.

Yang, W.

Yang, Y.

Yao, Z.

Yariv, A.

Yarnall, T. M.

Yu, J.

Yuan, Q.

Zaouter, Y.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Zhang, B.

Zhang, H.

Zhang, Y.

Zhao, C.

Zhao, X.

Zheng, Y.

Zhou, J.

Zhou, P.

Zhou, W.

Zhu, R.

Zhu, Z.

Zong, J.

Zuo, C.

Appl. Opt. (5)

IEEE J. Sel. Top. Quantum Electron. (3)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Linc. Lab. J. (1)

A. Sanchez-Rubio, T. Y. Fan, S. J. Augst, A. K. Goyal, K. J. Creedon, J. T. Gopinath, V. Daneu, B. Chann, and R. Huang, “Wavelength beam combining for power and brightness scaling of laser systems,” Linc. Lab. J. 20, 52–66 (2014).

Opt. Eng. (1)

C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18(2), 104–115 (1979).
[Crossref]

Opt. Express (16)

C. Jauregui, H. J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

A. Jin, J. Hou, B. Zhang, H. Chen, and Z. Jiang, “Theoretical models for beam quality evaluation of fiber supercontinuum sources,” Opt. Express 21(11), 13459–13466 (2013).
[Crossref] [PubMed]

P. Ma, R. Tao, X. Wang, Y. Ma, R. Su, and P. Zhou, “Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime,” Opt. Express 22(4), 4123–4130 (2014).
[Crossref] [PubMed]

A. Flores, C. Robin, A. Lanari, and I. Dajani, “Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers,” Opt. Express 22(15), 17735–17744 (2014).
[Crossref] [PubMed]

Z. Zhu, L. Gou, M. Jiang, Y. Hui, H. Lei, and Q. Li, “High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining,” Opt. Express 22(15), 17804–17809 (2014).
[Crossref] [PubMed]

H. Meng, T. Sun, H. Tan, J. Yu, W. Du, F. Tian, J. Li, S. Gao, X. Wang, and D. Wu, “High-brightness spectral beam combining of diode laser array stack in an external cavity,” Opt. Express 23(17), 21819–21824 (2015).
[Crossref] [PubMed]

Q. Li, H. Zhang, X. Shen, P. Yan, H. Hao, and M. Gong, “Stimulated Raman scattering threshold for partially coherent light in silica fibers,” Opt. Express 23(22), 28438–28448 (2015).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

O. Schmidt, C. Wirth, D. Nodop, J. Limpert, T. Schreiber, T. Peschel, R. Eberhardt, and A. Tünnermann, “Spectral beam combination of fiber amplified ns-pulses by means of interference filters,” Opt. Express 17(25), 22974–22982 (2009).
[Crossref] [PubMed]

S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
[Crossref] [PubMed]

Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
[Crossref] [PubMed]

D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
[Crossref] [PubMed]

L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, “High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage,” Opt. Express 25(7), 7530–7537 (2017).
[Crossref] [PubMed]

F. Prevost, L. Lombard, J. Primot, L. P. Ramirez, L. Bigot, G. Bouwmans, and M. Hanna, “Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier,” Opt. Express 25(9), 9528–9534 (2017).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

S. Pan, J. Ma, R. Zhu, T. Ba, C. Zuo, F. Chen, J. Dou, C. Wei, and W. Zhou, “Real-time complex amplitude reconstruction method for beam quality M2 factor measurement,” Opt. Express 25(17), 20142–20155 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Photon. Res. (1)

Proc. SPIE (1)

E. Honea, R. S. Afzal, M. Savage-Leuchs, J. Henrie, K. Brar, N. Kurz, D. Jander, N. Gitkind, D. Hu, C. Robin, A. M. Jones, R. Kasinadhuni, and R. Humphreys, “Advances in fiber laser spectral beam combining for power scaling,” Proc. SPIE 9730, 97300Y (2016).
[Crossref]

Other (2)

K. Regelskis, K. Hou, G. Raciukaitis, and A. Galvanauskas, “Spatial dispersion-free spectral beam combining of high power pulsed Yb-doped fiber lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMA4.
[Crossref]

J. M. Eastman, “Scattering in all-dielectric multilayer bandpass filters and mirrors for lasers,” in Physics of Thin Films, G. Hass and H. M. Francombe, eds. (Academic, 1978), Vol. 10, p. 167.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration of filter-based SBC scheme. HR, high reflectivity mirror; YDCF, ytterbium-doped double-cladding fiber; WP, wedge prism.

Fig. 2
Fig. 2

(a). Scheme of the 5 kW-level Yb-doped fiber laser. LD, laser diode; HR FBG, highly reflective fiber Bragg grating; OC FBG, output coupler fiber Bragg grating; YDCF, ytterbium-doped double-cladding fiber; QBH, quartz block head. (b) The measured normalized laser spectrum for various power levels. (c) The output power of the high power Yb-doped fiber laser with respect to the input current.

Fig. 3
Fig. 3

(a) Structure of the edge filter used in the SBC system. (b) The reflectance curves of the edge filter under different surface roughness. The inset shows the edge filter.

Fig. 4
Fig. 4

(a) Left scale: The measured combined output power as a function of incident power. Right scale: The optical-to-optical conversion efficiency of the combined output beam. (b) The reflectance curve of the edge filter and the emitted optical spectrum of the combined output beam at 10.12 kW.

Fig. 5
Fig. 5

The measured beam quality of the combined output beam versus the rising current. (a) M2x; (b) M2y. Near-field beam profile of the combined output beam at optical power of 3.5 kW (c) and 10.12 kW (d).

Fig. 6
Fig. 6

(a) Test setup for measuring the deformation and temperature of the filter under high brightness optical load. (b) The measured result of the deformation and temperature of the filter versus the input current. (c) The temperature of the filter at the power of 10.12 kW.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ E 0 + E 0 - ]=P[ E s + 0 ]
P=[ p 1 p 3 p 2 p 4 ]
P= S 01 I 01 T 1 S 12 I 12 T m S ms I ms
I ij = 1 t ij [ 1 r ij r ij 1 ]
T j =[ e i φ j 0 0 e i φ j ]
S ij = 1 ( 1 r ij 2 ) [ a r ij 2 b r ij ( ba ) r ij ( b 1 a 1 ) a 1 r ij 2 b 1 ]
w( z )= 1 2πσ exp( z 2 2 σ 2 )
r= p 2 / p 1
R=r r

Metrics