Abstract

In the framework of characteristic mode method (CMM) we develop a theoretical approach for achieving invisibility and illusion of three-dimensional arbitrary-shaped objects. Starting from rigorous electromagnetic theory, electromagnetic wave interaction with arbitrarily shape scatterers is modelled by discrete-dipole approximation (DDA) method. By exploiting the characteristic mode analysis, it is theoretically shown that scattered field is tightly related to generalized eigenvalues of the matrix in the DDA method. A theoretical formulation for designing thin homogeneous cover is derived to achieve invisibility and illusion image of the irregularly shaped objects. It is demonstrated by numerical simulations that the proposed cloaking design provides a significant scattering reduction and optimal illusion performance.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres

Lin Zhang, Yan Shi, and Chang-Hong Liang
Opt. Express 24(20) 23333-23352 (2016)

Invisibility cloaks for toroids

Yu You, George W. Kattawar, and Ping Yang
Opt. Express 17(8) 6591-6599 (2009)

Design method for broadband free-space electromagnetic cloak based on isotropic material for size reduction and enhanced invisibility

Yongjune Kim, Ilsung Seo, Il-Suek Koh, and Yongshik Lee
Opt. Express 24(20) 22708-22717 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Capolino, Applications of Metamaterials (CPC, 2009).
  2. T. J. Cui, D. R. Smith, and R. P. Liu, Metamaterials Theory, Design and Applications (Springer, 2010).
  3. D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials Fundamental Principles and Applications (Springer, 2014).
  4. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
    [Crossref] [PubMed]
  5. W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
    [Crossref] [PubMed]
  6. M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
    [Crossref] [PubMed]
  7. R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
    [Crossref]
  8. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  10. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [Crossref] [PubMed]
  11. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
    [Crossref]
  12. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [Crossref] [PubMed]
  13. F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
    [Crossref]
  14. Y. Shi, W. Tang, and C. H. Liang, “A minimized invisibility complementary cloak with a composite shape,” IEEE Antennas Wirel. Propag. Lett. 13, 1880 (2015).
  15. W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E 83(2), 026601 (2011).
    [Crossref] [PubMed]
  16. W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
    [Crossref]
  17. Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
    [Crossref]
  18. Z. H. Jiang and D. H. Werner, “Quasi‐three‐dimensional angle‐tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
    [Crossref]
  19. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
    [Crossref] [PubMed]
  20. A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
    [Crossref]
  21. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [Crossref] [PubMed]
  22. Y. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
    [Crossref]
  23. P. Y. Chen and A. Alú, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
    [Crossref]
  24. N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
    [Crossref]
  25. L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
    [Crossref]
  26. F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
    [Crossref]
  27. L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
    [Crossref] [PubMed]
  28. S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
    [Crossref] [PubMed]
  29. R. F. Harrington, Field Computation by Moment Methods (IEEE, 1993).
  30. R. J. Garbacz and R. H. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antenn. Propag. 19(3), 348–358 (1971).
    [Crossref]
  31. R. F. Harrington and J. R. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antenn. Propag. 19(5), 622–628 (1971).
    [Crossref]
  32. R. F. Harrington, J. R. Mautz, and J. Y. Chang, “The theory of characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antenn. Propag. 20(2), 194–198 (1972).
    [Crossref]
  33. E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” J. Astrophys. 186, 705 (1973).
    [Crossref]
  34. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” J. Astrophys. 333, 848 (1988).
    [Crossref]
  35. B. T. Draine and J. J. Goodman, “Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation,” J. Astrophys. 405, 685 (1993).
    [Crossref]
  36. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491 (1994).
    [Crossref]
  37. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Ra. 79, 775–824 (2003).
    [Crossref]
  38. M. A. Yukin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Ra. 106(1), 558–589 (2007).
    [Crossref]
  39. R. Mittra, Computer Techniques for Electromagnetics (Permagon, 1973).

2017 (1)

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

2016 (2)

L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
[Crossref] [PubMed]

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

2015 (5)

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Y. Shi, W. Tang, and C. H. Liang, “A minimized invisibility complementary cloak with a composite shape,” IEEE Antennas Wirel. Propag. Lett. 13, 1880 (2015).

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

2014 (3)

Z. H. Jiang and D. H. Werner, “Quasi‐three‐dimensional angle‐tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

2013 (2)

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

2011 (2)

P. Y. Chen and A. Alú, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E 83(2), 026601 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

2008 (2)

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

2007 (1)

M. A. Yukin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Ra. 106(1), 558–589 (2007).
[Crossref]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref] [PubMed]

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

2003 (1)

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Ra. 79, 775–824 (2003).
[Crossref]

1994 (1)

1993 (1)

B. T. Draine and J. J. Goodman, “Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation,” J. Astrophys. 405, 685 (1993).
[Crossref]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” J. Astrophys. 333, 848 (1988).
[Crossref]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” J. Astrophys. 186, 705 (1973).
[Crossref]

1972 (1)

R. F. Harrington, J. R. Mautz, and J. Y. Chang, “The theory of characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antenn. Propag. 20(2), 194–198 (1972).
[Crossref]

1971 (2)

R. J. Garbacz and R. H. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antenn. Propag. 19(3), 348–358 (1971).
[Crossref]

R. F. Harrington and J. R. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antenn. Propag. 19(5), 622–628 (1971).
[Crossref]

Alú, A.

P. Y. Chen and A. Alú, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Alù, A.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref] [PubMed]

Belov, P. A.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Bilotti, F.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref] [PubMed]

Chan, C. T.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Chang, J. Y.

R. F. Harrington, J. R. Mautz, and J. Y. Chang, “The theory of characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antenn. Propag. 20(2), 194–198 (1972).
[Crossref]

Chen, H.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Chen, H. B.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Chen, P. Y.

P. Y. Chen and A. Alú, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

Cheng, Q.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

Cui, T. J.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E 83(2), 026601 (2011).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491 (1994).
[Crossref]

B. T. Draine and J. J. Goodman, “Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation,” J. Astrophys. 405, 685 (1993).
[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” J. Astrophys. 333, 848 (1988).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref] [PubMed]

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

Fan, Y.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Farina, C.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Filonov, D. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Flatau, P. J.

Gao, L.

Y. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Garbacz, R. J.

R. J. Garbacz and R. H. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antenn. Propag. 19(3), 348–358 (1971).
[Crossref]

Goodman, J. J.

B. T. Draine and J. J. Goodman, “Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation,” J. Astrophys. 405, 685 (1993).
[Crossref]

Han, T. C.

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Harrington, R. F.

R. F. Harrington, J. R. Mautz, and J. Y. Chang, “The theory of characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antenn. Propag. 20(2), 194–198 (1972).
[Crossref]

R. F. Harrington and J. R. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antenn. Propag. 19(5), 622–628 (1971).
[Crossref]

Hoekstra, A. G.

M. A. Yukin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Ra. 106(1), 558–589 (2007).
[Crossref]

Huo, F. F.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Jiang, W. X.

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E 83(2), 026601 (2011).
[Crossref] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

Jiang, Z. H.

Z. H. Jiang and D. H. Werner, “Quasi‐three‐dimensional angle‐tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kahnert, F. M.

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Ra. 79, 775–824 (2003).
[Crossref]

Kivshar, Y. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Kort-Kamp, W. J. M.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Koschny, T.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Lai, Y.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Li, B.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Li, L.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Li, T.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Liang, C. H.

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
[Crossref] [PubMed]

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Y. Shi, W. Tang, and C. H. Liang, “A minimized invisibility complementary cloak with a composite shape,” IEEE Antennas Wirel. Propag. Lett. 13, 1880 (2015).

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Limonov, M. F.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Liu, R.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

Ma, H. F.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Mautz, J. R.

R. F. Harrington, J. R. Mautz, and J. Y. Chang, “The theory of characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antenn. Propag. 20(2), 194–198 (1972).
[Crossref]

R. F. Harrington and J. R. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antenn. Propag. 19(5), 622–628 (1971).
[Crossref]

Mei, Z. L.

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

Meng, Y.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ni, Y.

Y. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Peng, R.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” J. Astrophys. 186, 705 (1973).
[Crossref]

Pinheiro, F. A.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” J. Astrophys. 186, 705 (1973).
[Crossref]

Qiu, C. W.

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Y. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Rosa, F. S. S.

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering,” J. Opt. Soc. Am. A 31(9), 1969–1976 (2014).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Rybin, M. V.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Schurig, D.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shen, N.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Shi, Y.

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
[Crossref] [PubMed]

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Y. Shi, W. Tang, and C. H. Liang, “A minimized invisibility complementary cloak with a composite shape,” IEEE Antennas Wirel. Propag. Lett. 13, 1880 (2015).

Smith, D. R.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Tang, W.

Y. Shi, W. Tang, and C. H. Liang, “A minimized invisibility complementary cloak with a composite shape,” IEEE Antennas Wirel. Propag. Lett. 13, 1880 (2015).

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Tricarico, S.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref] [PubMed]

Turpin, R. H.

R. J. Garbacz and R. H. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antenn. Propag. 19(3), 348–358 (1971).
[Crossref]

Vegni, L.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref] [PubMed]

Werner, D. H.

Z. H. Jiang and D. H. Werner, “Quasi‐three‐dimensional angle‐tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Xiang, N.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Xiao, Z.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Yang, F.

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

Yukin, M. A.

M. A. Yukin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Ra. 106(1), 558–589 (2007).
[Crossref]

Zhang, F.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Zhang, L.

L. Zhang, Y. Shi, and C. H. Liang, “Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres,” Opt. Express 24(20), 23333–23352 (2016).
[Crossref] [PubMed]

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

Zhang, P.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Zhang, S.

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Zhang, Y. M.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Zhang, Z. Q.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

Zhao, J.

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Zhao, Q.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Zhou, J.

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Adv. Funct. Mater. (2)

W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusion using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Z. H. Jiang and D. H. Werner, “Quasi‐three‐dimensional angle‐tolerant electromagnetic illusion using ultrathin metasurface coatings,” Adv. Funct. Mater. 24(48), 7728–7736 (2014).
[Crossref]

Appl. Phys. Express (1)

N. Xiang, Q. Cheng, H. B. Chen, J. Zhao, W. X. Jiang, H. F. Ma, and T. J. Cui, “Bifunctional metasurface for electromagnetic cloaking and illusion,” Appl. Phys. Express 8(9), 092601 (2015).
[Crossref]

Appl. Phys. Lett. (1)

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (3)

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multi-objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Y. Shi, W. Tang, and C. H. Liang, “A minimized invisibility complementary cloak with a composite shape,” IEEE Antennas Wirel. Propag. Lett. 13, 1880 (2015).

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

R. J. Garbacz and R. H. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antenn. Propag. 19(3), 348–358 (1971).
[Crossref]

R. F. Harrington and J. R. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antenn. Propag. 19(5), 622–628 (1971).
[Crossref]

R. F. Harrington, J. R. Mautz, and J. Y. Chang, “The theory of characteristic modes for dielectric and magnetic bodies,” IEEE Trans. Antenn. Propag. 20(2), 194–198 (1972).
[Crossref]

J. Appl. Phys. (1)

A. Alú and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97(9), 094310 (2005).
[Crossref]

J. Astrophys. (3)

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” J. Astrophys. 186, 705 (1973).
[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” J. Astrophys. 333, 848 (1988).
[Crossref]

B. T. Draine and J. J. Goodman, “Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation,” J. Astrophys. 405, 685 (1993).
[Crossref]

J. Opt. (2)

L. Zhang, Y. Shi, and C. H. Liang, “Achieving illusion and invisibility of inhomogeneous cylinders and spheres,” J. Opt. 18(8), 085101 (2016).
[Crossref]

F. Yang, Z. L. Mei, W. X. Jiang, and T. J. Cui, “Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation,” J. Opt. 17(10), 105610 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Ra. (2)

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Ra. 79, 775–824 (2003).
[Crossref]

M. A. Yukin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Ra. 106(1), 558–589 (2007).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

P. Y. Chen and A. Alú, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011).
[Crossref]

Phys. Rev. E (3)

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, “Plasmonic cloaking for irregular objects with anisotropic scattering properties,” Phys. Rev. E 81(2), 026602 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005).
[Crossref] [PubMed]

W. X. Jiang and T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E 83(2), 026601 (2011).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina, “Tuning plasmonic cloaks with an external magnetic field,” Phys. Rev. Lett. 111(21), 215504 (2013).
[Crossref] [PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

R. Peng, Z. Xiao, Q. Zhao, F. Zhang, Y. Meng, B. Li, J. Zhou, Y. Fan, P. Zhang, N. Shen, T. Koschny, and C. M. Soukoulis, “Temperature-controlled chameleonlike cloak,” Phys. Rev. X 7(1), 011033 (2017).
[Crossref]

Plasmonics (1)

Y. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5(3), 251–258 (2010).
[Crossref]

Sci. Rep. (1)

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (5)

F. Capolino, Applications of Metamaterials (CPC, 2009).

T. J. Cui, D. R. Smith, and R. P. Liu, Metamaterials Theory, Design and Applications (Springer, 2010).

D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials Fundamental Principles and Applications (Springer, 2014).

R. F. Harrington, Field Computation by Moment Methods (IEEE, 1993).

R. Mittra, Computer Techniques for Electromagnetics (Permagon, 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Two spheres with the same radius and the different permittivities. (a) Eigenvalue distribution. (b) RCS.
Fig. 2
Fig. 2 Diagram of the illusion effect.
Fig. 3
Fig. 3 RCS comparison between the coated object and the illusion object. (a) XOY plane. (b) XOZ plane.
Fig. 4
Fig. 4 Comparison of near field distribution. (a) Coated object. (b) Illusion object.
Fig. 5
Fig. 5 Backscattering comparison between the coated and illusion objects over frequencies.
Fig. 6
Fig. 6 Comparison of near field distribution. (a) Sole object. (b) Coated object.
Fig. 7
Fig. 7 RCS comparison between the coated object and the sole object. (a) XOY plane. (b) XOZ plane.
Fig. 8
Fig. 8 Comparison of near field distribution. (a) Coated object. (b) Illusion object.
Fig. 9
Fig. 9 RCS comparison between the coated object and the sole object.
Fig. 10
Fig. 10 Invisibility of the dispersive object. (a) Relative permittivity of the object. (b) Backscattering comparison between the coated and illusion objects over frequencies.
Fig. 11
Fig. 11 Comparison of near field distribution at 200 MHz. (a) Sole object. (b) Coated object.
Fig. 12
Fig. 12 Variation of the evaluation function with the relative permittivity of the coating.
Fig. 13
Fig. 13 RCS comparison between the coated object and the sole object. (a) XOY plane. (b) XOZ plane.
Fig. 14
Fig. 14 Comparison of near-field distribution. (a) Sole object. (b) Coated object.
Fig. 15
Fig. 15 RCS comparison between the coated object and the sole object for TE polarized, obliquely incident wave. (a) YOZ plane. (b) XOZ plane.
Fig. 16
Fig. 16 RCS comparison between the coated object and the sole object for TM polarized, obliquely incident wave. (a) YOZ plane. (b) XOZ plane.
Fig. 17
Fig. 17 Variation of the evaluation function with the relative permittivity of the coating.
Fig. 18
Fig. 18 RCS comparison between the coated object and the illusion object. (a) XOY plane. (b) XOZ plane.
Fig. 19
Fig. 19 Comparison of near field distribution. (a) Coated object. (b) Illusion object.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

E ( r )= E inc ( r )+ i 4πω ε 0 V G ¯ ( r , r ) J ( r )d v ,
G ¯ ( r , r )=[ k 2 I ¯ + ]g( r , r )=g( r , r )[ k 2 ( I ¯ R ^ R ^ R 2 ) 1ikR R 2 ( I ¯ 3 R ^ R ^ R 2 ) ],
g( r , r )= e ik| r r | | r r | , R ^ = R R = r r | r r | .
E ( r ) i 4π ε 0 ω V j G ¯ ( r , r ) J ( r )d v = E exc ( r ),
E exc ( r )= E inc ( r )+ i 4π ε 0 ω k=1 kj N V k G ¯ ( r , r ) J ( r )d v .
E j exc = E j inc + i 4πω ε 0 k=1 kj N G ¯ ( r j , r k ) J k Δ V k .
p k = i 4πω ε 0 V k J k .
E j exc = E j inc + k=1 kj N G ¯ ( r j , r k ) p k .
p j = α j E j exc ,
α j = α j CM 1+( α j CM / d 3 )[ b 1 + ε j b 2 + ε j b 3 S ] (kd) 2 (2/3 )i (kd) 3 ,
α j CM = 3 d 3 4π ( ε j 1 ε j +2 ),
S= ( u x inc k x inc ) 2 + ( u y inc k y inc ) 2 + ( u z inc k z inc ) 2 .
A ¯ p ¯ = E ¯ inc ,
A mn ={ e ik R m (m) n (n) R m (m) n (n) [ k 2 ( I ¯ u (m) v (n) R ^ u (m) R ^ v (n) R m (m) n (n) 2 ) 1ik R m (m) n (n) R m (m) n (n) 2 ( I ¯ u (m) v (n) 3 R ^ u (m) R ^ v (n) R m (m) n (n) 2 ) ] mn α m (m) 1 m=n .
E sca ( r )= e ikr r k 2 m=1 N e ik r m k ^ sca p m ,
σ= lim r 4π r 2 | E sca E inc | 2 =4π k 4 | m=1 N e ik r m k ^ sca p m | 2 .
R ¯ = 1 2 ( A ¯ + A ¯ * ), X ¯ = 1 2i ( A ¯ A ¯ * ).
A ¯ q ¯ n =(1+i λ n ) R ¯ q ¯ n ,
X ¯ q ¯ n = λ n R ¯ q ¯ n .
q ¯ m T Z ¯ q ¯ n =0 ( Z ¯ = A ¯ , R ¯ , X ¯ ),
q ¯ n T R ¯ q ¯ n =1,
{ q ¯ m T R ¯ q ¯ n = δ mn q ¯ m T X ¯ q ¯ n = λ n δ mn q ¯ m T A ¯ q ¯ n =(1+i λ n ) δ mn ,
p ¯ = l α l q ¯ l .
p ¯ = l V l inc 1+i λ l q ¯ l ,
V l inc = q ¯ l T E ¯ inc .
σ=4π k 4 | l V l inc V l sca 1+i λ l | 2 ,
A ¯ q ¯ n = R ¯ q ¯ n = λ n q ¯ n .
q ¯ m T A ¯ q ¯ n = λ n δ mn .
p ¯ = l V l inc λ l q ¯ l ,
σ=4π k 4 | l V l inc V l sca λ l | 2 .
A ¯ coated p ¯ coated = E ¯ inc ,
A ¯ Illusion p ¯ Illusion = E ¯ inc .
( R ¯ coated ) 1 X ¯ coated q ¯ coated = λ coated q ¯ coated ,
( R ¯ Illusion ) 1 X ¯ Illusion q ¯ Illusion = λ Illusion q ¯ Illusion .
tr[ X ¯ Illusion ( R ¯ Illusion ) 1 ]=tr[ X ¯ coated ( R ¯ coated ) 1 ].
X ¯ Illusion = X ¯ coated =diag[ 2 3 k 3 2 3 k 3 ],
R ¯ Illusion =diag[ β e β e ],
R ¯ coated =diag[ β 2 β 2 β 1 β 1 β 2 β 2 ],
N 1 β 1 + N 2 β 2 = N β e .
ε 2 = 3 β 2 d 3 3 k 2 ( b 1 b 2 ) d 2 4π 6 b 2 k 2 d 2 1 6 b 2 k 2 d 2 { 9 d 6 [ ( b 1 + b 2 ) k 2 d 2 18( b 1 + b 2 ) k 2 β 2 d 5 + , +π k 2 d 2 (24 b 1 120 b 2 )+9 β 2 2 ]24π β 2 d 3 +16 π 2 } 1 2
β 2 = N 2 β 1 β e (N β 1 N 1 β e ) .
σ 1 = 1 4π 0 π 0 2π | σ coated (θ,ϕ) σ illusion (θ,ϕ) | sinθdθdϕ.
σ 2 = 1 4π 0 π 0 2π | σ coated (θ,ϕ) | sinθdθdϕ.
ε ¯ 1 =[ 6.25 4 1 ].
ε 1 = ε + ( ε s ε ) ω p 2 ω p 2 +j2ω δ p ω 2

Metrics