Abstract

A graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber is proposed. The simulation results show that, the absorption peak can be tuned from 5.43896µm to 5.41418µm, by tuning the Fermi level of graphene from 0.2eV to 1.0eV. The simulation results also show that the absorption bandwidth is less than 1.0nm and the absorption rate is more than 0.99 for TE-polarization (electric field is parallel to grating grooves) in the tuning wavelength range. The ultra-narrowband absorption mechanism is originated from the low power loss in the guided-mode resonance. The tuning function is mainly attributed to the change of the real part of the graphene’s permittivity. This tunable ultra-narrowband mid-infrared absorber has potential applications in the tunable filtering and tunable coherent emission of thermal source.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region

Haiyu Meng, Lingling Wang, Guidong Liu, Xiongxiong Xue, Qi Lin, and Xiang Zhai
Appl. Opt. 56(21) 6022-6027 (2017)

Dirac semimetals based tunable narrowband absorber at terahertz frequencies

Gui-Dong Liu, Xiang Zhai, Hai-Yu Meng, Qi Lin, Yu Huang, Chu-Jun Zhao, and Ling-Ling Wang
Opt. Express 26(9) 11471-11480 (2018)

Tunable polarization-independent coherent perfect absorber based on a metal-graphene nanostructure

Yaying Ning, Zhewei Dong, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(26) 32467-32474 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  2. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  3. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  5. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  6. Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
    [Crossref]
  7. Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
    [Crossref]
  8. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
    [Crossref]
  9. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
    [Crossref] [PubMed]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  11. W. Ma, Y. Wen, and X. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref] [PubMed]
  12. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  13. H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
    [Crossref]
  14. P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
    [Crossref]
  15. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
    [Crossref]
  16. B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
    [Crossref]
  17. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  18. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  19. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
    [Crossref]
  20. P. Weis, J. L. Garcia-Pomar, and M. Rahm, “Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene,” Opt. Express 22(7), 8473–8489 (2014).
    [Crossref] [PubMed]
  21. B.-H. Huang, W.-B. Lu, X.-B. Li, J. Wang, and Z.-G. Liu, “Waveguide-coupled hybrid plasmonic modulator based on graphene,” Appl. Opt. 55(21), 5598–5602 (2016).
    [Crossref] [PubMed]
  22. Y. Wang, T. Li, and S. Zhu, “Graphene-based plasmonic modulator on a groove-structured metasurface,” Opt. Lett. 42(12), 2247–2250 (2017).
    [Crossref] [PubMed]
  23. F. Chen, “A tunable high-efficiency optical switch based on graphene coupled photonic crystals structure,” J. Mod. Opt. 64(15), 1531 (2017).
    [Crossref]
  24. B.-H. Shahram, G. Rahim, and H. S. Mohammad, “Three-dimensional analysis of an ultrashort optical cross-bar switch based on a graphene plasmonic coupler,” J. Lightwave Technol. 35(11), 2211–2217 (2017).
    [Crossref]
  25. Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
    [Crossref]
  26. Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
    [Crossref]
  27. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  28. B. Z. Xu, C. Q. Gu, Z. Li, and Z. Y. Niu, “A novel structure for tunable terahertz absorber based on graphene,” Opt. Express 21(20), 23803–23811 (2013).
    [Crossref] [PubMed]
  29. B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
    [Crossref] [PubMed]
  30. A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941–1946 (2015).
    [Crossref]
  31. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  32. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
    [Crossref] [PubMed]
  33. Y.-L. Liao, Y. Zhao, X. Zhang, and Z. Chen, “An ultra-narrowband absorber with a compound dielectric grating and metal substrate,” Opt. Commun. 385, 172–176 (2017).
    [Crossref]
  34. Y.-L. Liao and Y. Zhao, “An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance,” Opt. Commun. 382, 307–310 (2017).
    [Crossref]
  35. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  36. M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  37. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2(11), 1103–1107 (1963).
    [Crossref]
  38. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  39. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref] [PubMed]
  40. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
    [Crossref] [PubMed]
  41. B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
    [Crossref]
  42. H. Meng, L. Wang, G. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
    [Crossref] [PubMed]
  43. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]

2017 (7)

2016 (6)

B.-H. Huang, W.-B. Lu, X.-B. Li, J. Wang, and Z.-G. Liu, “Waveguide-coupled hybrid plasmonic modulator based on graphene,” Appl. Opt. 55(21), 5598–5602 (2016).
[Crossref] [PubMed]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

2015 (2)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941–1946 (2015).
[Crossref]

2014 (3)

2013 (4)

2012 (4)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

2011 (4)

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

2010 (4)

B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2009 (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

2008 (2)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

1995 (1)

1963 (1)

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Alaee, R.

Andryieuski, A.

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Bian, R. B.

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chen, F.

F. Chen, “A tunable high-efficiency optical switch based on graphene coupled photonic crystals structure,” J. Mod. Opt. 64(15), 1531 (2017).
[Crossref]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chen, Z.

Y.-L. Liao, Y. Zhao, X. Zhang, and Z. Chen, “An ultra-narrowband absorber with a compound dielectric grating and metal substrate,” Opt. Commun. 385, 172–176 (2017).
[Crossref]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
[Crossref]

Cumming, D. R. S.

Deng, L. J.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fallahazad, B.

B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
[Crossref]

Fang, T.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Farhat, M.

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Gajic, R.

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Gao, Y.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Garcia-Pomar, J. L.

Gaylord, T. K.

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Grann, E. B.

Grant, J.

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Gu, C. Q.

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hone, J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Huang, B.-H.

Huang, L.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Janaszek, B.

Jena, D.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Jia, Z.-X.

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
[Crossref]

Jian, S.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Kelly, M. M.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Khalid, A.

Khan, A. D.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
[Crossref]

Khavasi, A.

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kim, P.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Kim, S.

B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
[Crossref]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Lavrinenko, A. V.

Lederer, F.

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Li, Q.

Li, T.

Y. Wang, T. Li, and S. Zhu, “Graphene-based plasmonic modulator on a groove-structured metasurface,” Opt. Lett. 42(12), 2247–2250 (2017).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Li, X.-B.

Li, Z.

Liao, Y.-L.

Y.-L. Liao and Y. Zhao, “An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance,” Opt. Commun. 382, 307–310 (2017).
[Crossref]

Y.-L. Liao, Y. Zhao, X. Zhang, and Z. Chen, “An ultra-narrowband absorber with a compound dielectric grating and metal substrate,” Opt. Commun. 385, 172–176 (2017).
[Crossref]

Lin, Q.

Liu, B. S.

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, C. X.

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, G.

Liu, L.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Liu, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.-G.

Lok, L. B.

Lu, W.-B.

Luo, M.

Ma, B.

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Ma, W.

Ma, Y.

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Malitson, I. H.

Mao, W. Z.

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Meng, H.

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Min, B.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mohammad, H. S.

Moharam, M. G.

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Niu, Z. Y.

Noman, M.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Pommet, D. A.

Qiu, M.

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rahim, G.

Rahm, M.

Ren, G.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Ruan, Z.

Rufangura, P.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Saha, S.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Shahram, B.-H.

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Shen, S.

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Shuai, Y.

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
[Crossref]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Szczepanski, P.

Tan, H.-P.

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Tutuc, E.

B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
[Crossref]

Tyszka-Zawadzka, A.

Ullah, A.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
[Crossref]

Ullah, H.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
[Crossref]

Ullah, I.

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
[Crossref]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Vasic, B.

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

Wang, J.

B.-H. Huang, W.-B. Lu, X.-B. Li, J. Wang, and Z.-G. Liu, “Waveguide-coupled hybrid plasmonic modulator based on graphene,” Appl. Opt. 55(21), 5598–5602 (2016).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

Wang, Y.

Y. Wang, T. Li, and S. Zhu, “Graphene-based plasmonic modulator on a groove-structured metasurface,” Opt. Lett. 42(12), 2247–2250 (2017).
[Crossref] [PubMed]

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Weis, P.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Y.

Wu, S.

Xing, H.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Xu, B. Z.

Xu, S.-D.

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
[Crossref]

Xu, Y. Q.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Xue, X.

Yan, R.

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

Yang, Y.

Yin, B.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Yu, X.

Zhai, X.

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Zhang, H. B.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhang, X.

Y.-L. Liao, Y. Zhao, X. Zhang, and Z. Chen, “An ultra-narrowband absorber with a compound dielectric grating and metal substrate,” Opt. Commun. 385, 172–176 (2017).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Zhao, D.

Zhao, Y.

Y.-L. Liao and Y. Zhao, “An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance,” Opt. Commun. 382, 307–310 (2017).
[Crossref]

Y.-L. Liao, Y. Zhao, X. Zhang, and Z. Chen, “An ultra-narrowband absorber with a compound dielectric grating and metal substrate,” Opt. Commun. 385, 172–176 (2017).
[Crossref]

Zhou, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, P. H.

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Zhou, Y.

Zhu, B.

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Zhu, S.

Appl. Opt. (3)

Appl. Phys. Lett. (5)

B. Vasić and R. Gajić, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 261111 (2013).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, “Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric,” Appl. Phys. Lett. 97(12), 123105 (2010).
[Crossref]

B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99(11), 113104 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. Alloys Compd. (1)

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

J. Appl. Phys. (3)

Y. Q. Xu, P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Y. Wang, B. S. Liu, R. B. Bian, W. Z. Mao, C. X. Liu, B. Ma, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

F. Chen, “A tunable high-efficiency optical switch based on graphene coupled photonic crystals structure,” J. Mod. Opt. 64(15), 1531 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Nature (2)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Opt. Commun. (2)

Y.-L. Liao, Y. Zhao, X. Zhang, and Z. Chen, “An ultra-narrowband absorber with a compound dielectric grating and metal substrate,” Opt. Commun. 385, 172–176 (2017).
[Crossref]

Y.-L. Liao and Y. Zhao, “An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance,” Opt. Commun. 382, 307–310 (2017).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. B (3)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Plasmonics (1)

Y. Gao, G. Ren, B. Zhu, L. Huang, H. Li, B. Yin, and S. Jian, “Tunable plasmonic filter based on graphene split-ring,” Plasmonics 11(1), 291–296 (2016).
[Crossref]

Sci. Rep. (2)

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Smart Science (1)

Z.-X. Jia, Y. Shuai, S.-D. Xu, and H.-P. Tan, “Graphene-based tunable metamaterial filter in infrared region,” Smart Science 4(3), 127–133 (2016).
[Crossref]

Solid State Commun. (1)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Other (1)

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” in 2016 International Conference on Emerging Technologies (IEEE, 2016), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Geometry of the grapheme-based tunable absorber structure
Fig. 2
Fig. 2 (a) Absorption spectra with different Fermi level, (b) absorption spectrum with E f =0.2eV, (c) absorption spectrum with E f =0.6eV, (d) absorption spectrum with E f =1.0eV.
Fig. 3
Fig. 3 Electric field distribution for λ=5.43896μm
Fig. 4
Fig. 4 Graphene permittivity as a function of wavelength with different Fermi level; (a) real part, (b) imaginary part.
Fig. 5
Fig. 5 Absorption spectra with different graphene permittivity.
Fig. 6
Fig. 6 (a) Absorption spectra with different filled factor, (b) absorption spectra with different grating height, (c) absorption spectra with different t 1 , (d) absorption spectra with different t 2 .
Fig. 7
Fig. 7 Absorption spectra with different refractive indices of the dielectric material. The insert shows the electric-field distribution at the resonant absorption wavelengths of 6.0255μm and 6.4355μm.
Fig. 8
Fig. 8 Absorption spectra with different incident angles. The insert shows the electric-field distribution at the resonant absorption peaks with θ= 30 o .
Fig. 9
Fig. 9 (a) Absorption angular pattern at λ=5.43896μm, (b) absorption angular pattern around θ= 0 o .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n Ca F 2 = 1+ 0.5675888 λ 2 λ 2 0.050263605 2 + 0.4710914 λ 2 λ 2 0.1003909 2 + 3.8484723 λ 2 λ 2 34.649040 2 .
ε Au =1 ω p 2 ω( ω+i ω c )
σ s = 2 e 2 k B Τ π 2 i i τ 1 ω ln[ 2cosh( E f 2 k B Τ ) ]+ i e 2 4π ln[ 2 E f +( ωi τ 1 ) 2 E f ( ωi τ 1 ) ]
Δλ=λΔε ΔV V
P= 1 2 ε 0 ωImε( ω ) | E | 2 dV
P Au P g = Im ε Au ( ω ) Im ε g ( ω ) | E | Au 2 dV | E | g 2 dV 448.95 0.2788 600 250000 4

Metrics