Abstract

Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CAOS-CMOS camera

Nabeel A. Riza, Juan Pablo La Torre, and M. Junaid Amin
Opt. Express 24(12) 13444-13458 (2016)

Demonstration of 136 dB dynamic range capability for a simultaneous dual optical band CAOS camera

Nabeel A. Riza and J. Pablo La Torre
Opt. Express 24(26) 29427-29443 (2016)

Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure

Jie Zhang, Tao Xiong, Trac Tran, Sang Chin, and Ralph Etienne-Cummings
Opt. Express 24(8) 9013-9024 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81 (1998).
  2. J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234 (1999).
  3. S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, (IEEE, 2004), pp.436–443.
  4. S. Sumriddetchkajorn and N. A. Riza, “Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41(18), 3506–3510 (2002).
    [PubMed]
  5. N. A. Riza, “Compressive optical display and imager,” US Patent 8783874 B1 (2014).
  6. S. Selivanov, V. N. Govorov, A. S. Titov, and V. P. Chemodanov, “Lunar Station Television Camera,” (Reilly Translations): NASA CR-97884 (1968).
  7. F. O. Huck, and J. J. Lambiotte, “A Performance Analysis of the Optical-Mechanical Scanner as an Imaging System for Planetary Landers,” NASA TN D-5552 (1969).
  8. N. A. Riza, J. P. La Torre, and M. J. Amin, “CAOS-CMOS camera,” Opt. Express 24(12), 13444–13458 (2016).
    [PubMed]
  9. N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc. Rap. Pub. 10, 15021 (2015).
  10. N. A. Riza and J. P. La Torre, “Demonstration of 136 dB dynamic range capability for a simultaneous dual optical band CAOS camera,” Opt. Express 24(26), 29427–29443 (2016).
    [PubMed]
  11. N. A. Riza, “The CAOS Camera Platform – Ushering in a Paradigm Change in Extreme Dynamic Range Imager Design,” Proc. SPIE Vol. 10117, 101170L (2017).
  12. N. A. Riza, “CAOS Smart Camera captures targets in extreme contrast scenarios,” (Photonics Spectra Magazine Technical Feature article, 2017). https://www.photonics.com/Article.aspx?AID=61645
  13. N. A. Riza and M. A. Mazhar, “CAOS Smart Microscope,” in Proc. Photonics Ireland Conf. (2017).
  14. Rochester Institute of technology, “Rods and Cones,” https://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html
  15. M. F. Land and B. W. Tatler, “Steering with the head: The visual strategy of a racing driver,” Elsevier Current Biol. J., Brief Commun. 11(15), 1215–1220 (2001).
  16. E. C. Farnett and G. H. Stevens, “Pulse compression radar,” in RCA/GE Aerospace, Radar Handbook, ed., M. I. Skolnik, (McGraw-Hill, 1990).
  17. W. C. Y. Lee, “Overview of Cellular CDMA,” IEEE Trans. Veh.Technol. 40(2), (1991).
  18. R. Gold, “Optimal binary sequences for spread spectrum multiplexing (corresp.),” IEEE Trans. Inf. Theory 13(4), 619–621 (1967).
  19. V. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for quasi-synchronous communication systems,” in Proc. of IEEE Conference on Universal Personal Communications (IEEE, 1993), pp. 995–999.
  20. E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).
  21. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes (North Holland 1986).
  22. V-7001 SuperSpeed module datasheet, Vialux, Germany, (2017).
  23. M. J. E. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Am. 39(6), 437–444 (1949).
    [PubMed]
  24. P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).
  25. N. A. Riza, Chapter 4: Optical Disk-based Acousto-Optic Spectrum Analysis, Caltech Ph.D. Thesis, Oct. 1989.
  26. J. D. Gibson, ed., Mobile Communications Handbook, (CRC, 2013 III Edition).
  27. J. L. Walsh, “A closed set of normal orthogonal functions,” Am. J. Math. 45(1), 5–24 (1923).
  28. J. Hadamard, “Resolution d’une question relative aux determinants,” Bull. Sci. Math. 17(1), 240–246 (1893).
  29. J. Seberry and M. Yamada, “Hadamard matrices, sequences, and block designs,” in Contemporary Design Theory: A Collection of Essays, J. H. Dinitz, and D.R. Stinson, ed. (Wiley 1992).
  30. J. T. Bushberg, J. A. Seibert, E.M. Leidholdt, Jr, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2002).
  31. D. Shafer and Z. Zhang, Introductory Statistics, (Saylor Foundation 2012).
  32. A. Rose, Vision – Human and Electronic (Plenum 1973).

2016 (2)

2015 (1)

N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc. Rap. Pub. 10, 15021 (2015).

2002 (1)

2001 (1)

M. F. Land and B. W. Tatler, “Steering with the head: The visual strategy of a racing driver,” Elsevier Current Biol. J., Brief Commun. 11(15), 1215–1220 (2001).

1999 (1)

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234 (1999).

1998 (2)

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81 (1998).

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).

1968 (1)

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).

1967 (1)

R. Gold, “Optimal binary sequences for spread spectrum multiplexing (corresp.),” IEEE Trans. Inf. Theory 13(4), 619–621 (1967).

1949 (1)

1923 (1)

J. L. Walsh, “A closed set of normal orthogonal functions,” Am. J. Math. 45(1), 5–24 (1923).

1893 (1)

J. Hadamard, “Resolution d’une question relative aux determinants,” Bull. Sci. Math. 17(1), 240–246 (1893).

Amin, M. J.

N. A. Riza, J. P. La Torre, and M. J. Amin, “CAOS-CMOS camera,” Opt. Express 24(12), 13444–13458 (2016).
[PubMed]

N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc. Rap. Pub. 10, 15021 (2015).

Boult, T.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, (IEEE, 2004), pp.436–443.

Branzoi, V.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, (IEEE, 2004), pp.436–443.

Castracane, J.

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234 (1999).

DaSilva, V.

V. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for quasi-synchronous communication systems,” in Proc. of IEEE Conference on Universal Personal Communications (IEEE, 1993), pp. 995–999.

Dinan, E. H.

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).

Golay, M. J. E.

Gold, R.

R. Gold, “Optimal binary sequences for spread spectrum multiplexing (corresp.),” IEEE Trans. Inf. Theory 13(4), 619–621 (1967).

Gottlieb, P.

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).

Gutin, M.

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234 (1999).

Hadamard, J.

J. Hadamard, “Resolution d’une question relative aux determinants,” Bull. Sci. Math. 17(1), 240–246 (1893).

Jabbari, B.

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).

Kearney, K.

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81 (1998).

La Torre, J. P.

Land, M. F.

M. F. Land and B. W. Tatler, “Steering with the head: The visual strategy of a racing driver,” Elsevier Current Biol. J., Brief Commun. 11(15), 1215–1220 (2001).

Mazhar, M. A.

N. A. Riza and M. A. Mazhar, “CAOS Smart Microscope,” in Proc. Photonics Ireland Conf. (2017).

Nayar, S.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, (IEEE, 2004), pp.436–443.

Ninkov, Z.

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81 (1998).

Riza, N. A.

Sousa, E. S.

V. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for quasi-synchronous communication systems,” in Proc. of IEEE Conference on Universal Personal Communications (IEEE, 1993), pp. 995–999.

Sumriddetchkajorn, S.

Tatler, B. W.

M. F. Land and B. W. Tatler, “Steering with the head: The visual strategy of a racing driver,” Elsevier Current Biol. J., Brief Commun. 11(15), 1215–1220 (2001).

Walsh, J. L.

J. L. Walsh, “A closed set of normal orthogonal functions,” Am. J. Math. 45(1), 5–24 (1923).

Am. J. Math. (1)

J. L. Walsh, “A closed set of normal orthogonal functions,” Am. J. Math. 45(1), 5–24 (1923).

Appl. Opt. (1)

Bull. Sci. Math. (1)

J. Hadamard, “Resolution d’une question relative aux determinants,” Bull. Sci. Math. 17(1), 240–246 (1893).

Elsevier Current Biol. J., Brief Commun. (1)

M. F. Land and B. W. Tatler, “Steering with the head: The visual strategy of a racing driver,” Elsevier Current Biol. J., Brief Commun. 11(15), 1215–1220 (2001).

IEEE Commun. Mag. (1)

E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and wideband CDMA cellular networks,” IEEE Commun. Mag. 36(9), 48–54 (1998).

IEEE Trans. Inf. Theory (2)

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” IEEE Trans. Inf. Theory 14(3), 428–433 (1968).

R. Gold, “Optimal binary sequences for spread spectrum multiplexing (corresp.),” IEEE Trans. Inf. Theory 13(4), 619–621 (1967).

J. Eur. Opt. Soc. Rap. Pub. (1)

N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc. Rap. Pub. 10, 15021 (2015).

J. Opt. Soc. Am. (1)

Opt. Express (2)

Proc. SPIE (2)

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81 (1998).

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234 (1999).

Other (19)

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, (IEEE, 2004), pp.436–443.

N. A. Riza, “Compressive optical display and imager,” US Patent 8783874 B1 (2014).

S. Selivanov, V. N. Govorov, A. S. Titov, and V. P. Chemodanov, “Lunar Station Television Camera,” (Reilly Translations): NASA CR-97884 (1968).

F. O. Huck, and J. J. Lambiotte, “A Performance Analysis of the Optical-Mechanical Scanner as an Imaging System for Planetary Landers,” NASA TN D-5552 (1969).

N. A. Riza, “The CAOS Camera Platform – Ushering in a Paradigm Change in Extreme Dynamic Range Imager Design,” Proc. SPIE Vol. 10117, 101170L (2017).

N. A. Riza, “CAOS Smart Camera captures targets in extreme contrast scenarios,” (Photonics Spectra Magazine Technical Feature article, 2017). https://www.photonics.com/Article.aspx?AID=61645

N. A. Riza and M. A. Mazhar, “CAOS Smart Microscope,” in Proc. Photonics Ireland Conf. (2017).

Rochester Institute of technology, “Rods and Cones,” https://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

V. DaSilva and E. S. Sousa, “Performance of orthogonal CDMA codes for quasi-synchronous communication systems,” in Proc. of IEEE Conference on Universal Personal Communications (IEEE, 1993), pp. 995–999.

E. C. Farnett and G. H. Stevens, “Pulse compression radar,” in RCA/GE Aerospace, Radar Handbook, ed., M. I. Skolnik, (McGraw-Hill, 1990).

W. C. Y. Lee, “Overview of Cellular CDMA,” IEEE Trans. Veh.Technol. 40(2), (1991).

N. A. Riza, Chapter 4: Optical Disk-based Acousto-Optic Spectrum Analysis, Caltech Ph.D. Thesis, Oct. 1989.

J. D. Gibson, ed., Mobile Communications Handbook, (CRC, 2013 III Edition).

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes (North Holland 1986).

V-7001 SuperSpeed module datasheet, Vialux, Germany, (2017).

J. Seberry and M. Yamada, “Hadamard matrices, sequences, and block designs,” in Contemporary Design Theory: A Collection of Essays, J. H. Dinitz, and D.R. Stinson, ed. (Wiley 1992).

J. T. Bushberg, J. A. Seibert, E.M. Leidholdt, Jr, and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2002).

D. Shafer and Z. Zhang, Introductory Statistics, (Saylor Foundation 2012).

A. Rose, Vision – Human and Electronic (Plenum 1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

CAOS smart camera design programmed for operation in the CDMA-mode.

Fig. 2
Fig. 2

(a) Flashlight target image obtained with flashlight off and using ambient room lighting and an external CMOS Camera. (b) Target image seen using the CMOS-mode of the CAOS smart camera engaging a 2.3 OD ND filter. (c) Target image seen with flashlight on and using the CDMA-mode of CAOS smart camera with code bit rate of 10 KHz and using a 4 mm x 4 mm zone on the DMD.

Fig. 3
Fig. 3

(a) CMOS-mode CAOS smart camera generated flashlight target gray-scale (color coded) image with a 115:1 max/min irradiance ratio when using a 200X optical attenuation via ND filter. (b) CDMA-mode CAOS smart camera generated un-attenuated true flashlight target gray-scale (color coded) image with a 156:1 max/min irradiance ratio. (c) Time domain plot of the voltage signal from the point PD over a CDMA-mode CAOS pixel encoding duration of 0.4096 seconds over 4096 code bits. (d) Frequency domain plot of the point PD signal generated by 3600 CDMA-mode CAOS pixels.

Fig. 4
Fig. 4

(a) Normalized irradiance values of the CAOS pixels recovered after time domain correlation processing for 3600 CAOS pixels operating simultaneously in the CDMA-mode.

Fig. 5
Fig. 5

(a) Machined traffic sign target seen using the Canon camera and room lighting. (b) CMOS-mode image from the CAOS Smart Camera when using a 1.9 OD filter to attenuate the flashlight lit traffic sign target observed with no room lighting. (c) CDMA-mode CAOS image from Smart Camera with no optical attenuation of the target. (d) An improved 2x2 micro-mirror spatial resolution CDMA-mode CAOS image of the top end of the traffic sign. (e) A further improved 1 micro-mirror spatial resolution CDMA-mode CAOS image of the top right end edge of the arrowhead using a 20 dB point PD gain setting. (f) Using a higher 60 dB point PD gain setting, a lower spatial noise image of the captured image shown in (e).

Fig. 6
Fig. 6

(a) Irregular contour L-shaped target. (b) CMOS-mode CAOS smart camera target image when attenuating the target with a 0.9 ND filter. (c) CDMA-mode CAOS smart camera captured target image using 187 CAOS pixels and 10 x 10 micro-mirrors CAOS pixel size. (d) Higher resolution CDMA-mode CAOS smart camera captured target image using 748 CAOS pixels and 5 x 5 micro-mirrors CAOS pixel size.

Fig. 7
Fig. 7

(a) Photo of a high DR target using a small filament bulb placed next to a flashlight. (b) Logarithmic scale CMOS mode image of filament and flashlight targets when using a 2.3 OD optical attenuation of scene. (c) Log-scale CMOS-mode image missing the filament target as filament light level has dropped to create a > 51 dB DR scene.

Fig. 8
Fig. 8

Log-scale CDMA-mode images of the dual-targets scene acquired for different DR conditions. (a) Dual target DR is under the 51 dB limit of CMOS sensor. (b) Dual target DR is at 55 dB (c) The Filament is off while the flashlight is on so a scene background is observed.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

c p (t) c j (t)=0(pj)
i p (t)=K× I p × c p (t)
i PD (t)= p=1 P i p (t)=K p=1 P I p c p (t)
I j = w j (t)= i PD (t) c j (t)
I j = + i PD (τ) c j (τt)dτ
I j =K + [ i 1 (τ)+ i 2 (τ)+ i 3 (τ)+ i P (τ)] c j (τt)dτ I j =K + [ I 1 c 1 (τ)+ I 2 c 2 (τ)+ I 3 c 3 (τ)+ I P c P (τ)] c j (τt)dτ I j =K I j + c j (τ) c j (τt)dτ+K p=1 pj P [ I p + c p (τ) c j (τt)dτ ]
I j = w j (t=0)=K I j + c j (τ) c j (τ)dτ+K p=1 pj P [ I p + c p (τ) c j (τ)dτ ]
I j =K I j + c j (τ) c j (τ)dτ=K I j [ c j (t) c j (t)]
c p E (t)= q= N 2 1 N/2 a pq E rect[ tq T b T b ]
i PD (t)= p=1 P i p (t) =K p=1 P I p c p E (t)
c j D (t)= q= N 2 1 N/2 a jq D rect[ tq T b T b ]
I j = w j (t=0)= i PD (t) c j D (t)= A j +C
A j =K I j c j E (t) c j D (t)=K I j q= N 2 1 N/2 a jq E a jq D =K I j a j E a j D = K I j N 2
C=K p=1 pj P I p c p E (t) c j D (t)=K p=1 pj P I p q= N 2 1 N/2 a pq E a jq D =K p=1 pj P I p a p E a j D =0
I j = A j +C=K I j N 2
σ n = 1 F1 [ f=1 F [ V f V ¯ n ] 2 ] ,σ= 1 N1 n=1 N1 σ n and V ¯ = 1 N1 n=1 N1 V ¯ n

Metrics