Abstract

A collimating polycapillary half lens, traditionally used in the medium and hard X-ray band, is operated at a photon energy of 36 eV for the first time. While the transmission still exceeds 50%, the measured and simulated spatial resolution and angular divergence approach 0.4 mm or less and at most 20 mrad, respectively. This unexpected, superior performance of the polycapillary optic in the extreme Ultraviolet could enable the design of an efficient, versatile and compact spectrometer for inverse photoemission spectroscopy (IPES): Its wavelength-dispersive component, a customized reflection zone plate, can maintain an energy resolution of 0.3 eV, whereas the sensitivity may be enhanced by more than one order of magnitude, compared to conventional spectrometers. Furthermore, the overall length of 0.9 m would allow for an eased alignment and evacuation. We see a significant potential for numerous polycapillary-based XUV / soft X-ray instruments in the future, in particular after further optimization for this long wavelength regime.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond high-resolution hard X-ray spectroscopy using reflection zone plates

Heike Löchel, Christoph Braig, Maria Brzhezinskaya, Frank Siewert, Peter Baumgärtel, Alexander Firsov, and Alexei Erko
Opt. Express 23(7) 8788-8799 (2015)

Design and optimization of a parallel spectrometer for ultra-fast X-ray science

Christoph Braig, Heike Löchel, Rolf Mitzner, Wilson Quevedo, Panagiotis Loukas, Markus Kubin, Christian Weniger, Alexander Firsov, Jens Rehanek, Maria Brzhezinskaya, Philippe Wernet, Alexander Föhlisch, and Alexei Erko
Opt. Express 22(10) 12583-12602 (2014)

Simultaneous optical tracking of multiple targets in a field of view greater than 20°

Kotomi Kawakami, Hideki Okamura, and Kimiya Komurasaki
Opt. Express 23(8) 9777-9783 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
    [Crossref]
  2. M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
    [Crossref]
  3. J. Metje, M. Borgwardt, A. Moguilevski, A. Kothe, N. Engel, M. Wilke, R. Al-Obaidi, D. Tolksdorf, A. Firsov, M. Brzhezinskaya, A. Erko, I. Y. Kiyan, and E. F. Aziz, “Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates,” Opt. Express 22, 10747–10760 (2014).
    [Crossref] [PubMed]
  4. X. Zeng, F. Duewer, M. Feser, C. Huang, A. Lyon, A. Tkachuk, and W. Yun, “Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes,” Appl. Opt. 47, 2376–2381 (2008).
    [Crossref] [PubMed]
  5. C. A. MacDonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Opt. Instrum. 2010, 867049 (2010).
  6. F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
    [Crossref]
  7. A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
    [Crossref] [PubMed]
  8. W. H. Richardson, “Bayesian-Based Iterative Method of Image Restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
    [Crossref]
  9. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
    [Crossref]
  10. Optica Software, 613 W Delaware Ave, Urbana IL, 61801, USA, http://www.opticasoftware.com (2017).
  11. A. Liu, “Simulation of X-ray beam collimation by polycapillaries,” Nucl. Instr. Meth. Phys. Res. B 234, 555–562 (2005).
    [Crossref]
  12. A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
    [Crossref]
  13. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30000 eV, Z = 1 – 92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [Crossref]
  14. L. Kaihola, “Anomalous Soft X-Ray Reflectivity of Borosilicate Glass by Successive Grazing Reflections,” Phys. Stat. Sol. A 65, 163–166 (1981).
    [Crossref]
  15. D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Laue Diffraction Experiments,” Science 263, 201–203 (1994).
    [Crossref] [PubMed]
  16. L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
    [Crossref]
  17. T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
    [Crossref]
  18. T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 113, 053104 (2013).
    [Crossref]
  19. S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].
  20. H. Löchel, C. Braig, M. Brzhezinskaya, F. Siewert, P. Baumgärtel, A. Firsov, and A. Erko, “Femtosecond high-resolution hard X-ray spectroscopy using reflection zone plates,” Opt. Express 23, 8788–8799 (2015).
    [Crossref] [PubMed]
  21. J. I. Larruquert, L. V. Rodríguez-de Marcos, J. A. Méndez, P. J. Martin, and A. Bendavid, “High reflectance ta-C coatings in the extreme ultraviolet,” Opt. Express 21, 27537–27549 (2013).
    [Crossref]

2016 (2)

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (2)

J. I. Larruquert, L. V. Rodríguez-de Marcos, J. A. Méndez, P. J. Martin, and A. Bendavid, “High reflectance ta-C coatings in the extreme ultraviolet,” Opt. Express 21, 27537–27549 (2013).
[Crossref]

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 113, 053104 (2013).
[Crossref]

2011 (2)

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

2010 (1)

C. A. MacDonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Opt. Instrum. 2010, 867049 (2010).

2008 (1)

2007 (1)

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

2005 (1)

A. Liu, “Simulation of X-ray beam collimation by polycapillaries,” Nucl. Instr. Meth. Phys. Res. B 234, 555–562 (2005).
[Crossref]

1998 (1)

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

1997 (1)

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

1994 (1)

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Laue Diffraction Experiments,” Science 263, 201–203 (1994).
[Crossref] [PubMed]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30000 eV, Z = 1 – 92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

1981 (1)

L. Kaihola, “Anomalous Soft X-Ray Reflectivity of Borosilicate Glass by Successive Grazing Reflections,” Phys. Stat. Sol. A 65, 163–166 (1981).
[Crossref]

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[Crossref]

1972 (1)

Adams, F.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

Al-Obaidi, R.

Aziz, E. F.

Bär, M.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Baumgärtel, P.

Bendavid, A.

Bilderback, D. H.

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Laue Diffraction Experiments,” Science 263, 201–203 (1994).
[Crossref] [PubMed]

Bischoff, P.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

Bjeoumikhov, A.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Bjeoumikhov, Z.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Bjeoumikhova, S.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Blum, M.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Boehme, M.

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

Borgwardt, M.

Braig, C.

Brzhezinskaya, M.

Buchriegler, J.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Carstensen, H.

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

Claessen, R.

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30000 eV, Z = 1 – 92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Ding, X.

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Duewer, F.

Eggenstein, F.

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

Engel, N.

Engström, P.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

Erko, A.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

H. Löchel, C. Braig, M. Brzhezinskaya, F. Siewert, P. Baumgärtel, A. Firsov, and A. Erko, “Femtosecond high-resolution hard X-ray spectroscopy using reflection zone plates,” Opt. Express 23, 8788–8799 (2015).
[Crossref] [PubMed]

J. Metje, M. Borgwardt, A. Moguilevski, A. Kothe, N. Engel, M. Wilke, R. Al-Obaidi, D. Tolksdorf, A. Firsov, M. Brzhezinskaya, A. Erko, I. Y. Kiyan, and E. F. Aziz, “Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates,” Opt. Express 22, 10747–10760 (2014).
[Crossref] [PubMed]

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Erko, M.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Feser, M.

Firsov, A.

Gaupp, A.

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

Grigoriev, M.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30000 eV, Z = 1 – 92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30000 eV, Z = 1 – 92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

Heske, C.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Hoffman, S. A.

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Laue Diffraction Experiments,” Science 263, 201–203 (1994).
[Crossref] [PubMed]

Huang, C.

Janssens, K.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

Kaihola, L.

L. Kaihola, “Anomalous Soft X-Ray Reflectivity of Borosilicate Glass by Successive Grazing Reflections,” Phys. Stat. Sol. A 65, 163–166 (1981).
[Crossref]

Kipp, L.

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

Kiyan, I. Y.

Kothe, A.

Krause, S.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Künstner, S.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

Larruquert, J. I.

Li, Y.

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Lin, X.

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Liu, A.

A. Liu, “Simulation of X-ray beam collimation by polycapillaries,” Nucl. Instr. Meth. Phys. Res. B 234, 555–562 (2005).
[Crossref]

Liu, Z.

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Löchel, H.

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[Crossref]

Luo, P.

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Lyon, A.

MacDonald, C. A.

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 113, 053104 (2013).
[Crossref]

C. A. MacDonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Opt. Instrum. 2010, 867049 (2010).

Marsen, B.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Martin, P. J.

Mast, M.

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

Méndez, J. A.

Metje, J.

Moguilevski, A.

Munnik, F.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Nowak, S. H.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Pan, Q.

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Petric, M.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Pookpanratana, S.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Radtke, M.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Reinholz, U.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Renno, A. D.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Richardson, W. H.

Rindby, A.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

Rodríguez-de Marcos, L. V.

Schäfers, F.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

Scharf, O.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Schmidt, J.-S.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

Schock, H.-W.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Schubert, B.-A.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Senf, F.

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

Siewert, F.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

H. Löchel, C. Braig, M. Brzhezinskaya, F. Siewert, P. Baumgärtel, A. Firsov, and A. Erko, “Femtosecond high-resolution hard X-ray spectroscopy using reflection zone plates,” Opt. Express 23, 8788–8799 (2015).
[Crossref] [PubMed]

Skibowski, M.

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

Snigirev, A.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Snigireva, I.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Sokolov, A.

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

Sun, T.

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 113, 053104 (2013).
[Crossref]

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Thiel, D. J.

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Laue Diffraction Experiments,” Science 263, 201–203 (1994).
[Crossref] [PubMed]

Tilgner, J.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Tkachuk, A.

Tolksdorf, D.

Unold, T.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Vincze, L.

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

von Borany, J.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Wedell, R.

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Weinhardt, L.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Wilke, M.

Wilks, R. G.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Yang, W.

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Yun, W.

Yunkin, V.

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Zeng, X.

Zeschke, T.

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Bär, B.-A. Schubert, B. Marsen, R. G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, C. Heske, and H.-W. Schock, “Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction,” Appl. Phys. Lett. 99, 222105 (2011).
[Crossref]

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
[Crossref]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30000 eV, Z = 1 – 92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[Crossref]

J. Appl. Phys. (1)

T. Sun and C. A. MacDonald, “Full-field transmission x-ray imaging with confocal polycapillary x-ray optics,” J. Appl. Phys. 113, 053104 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Synchr. Rad. (2)

F. Schäfers, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, A. Sokolov, and T. Zeschke, “The At-Wavelength Metrology Facility for UV- and XUV-Reflection and Diffraction Optics at BESSY-II,” J. Synchr. Rad. 23, 67–77 (2016).
[Crossref]

A. Snigirev, A. Bjeoumikhov, A. Erko, I. Snigireva, M. Grigoriev, V. Yunkin, M. Erko, and S. Bjeoumikhova, “Two-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary,” J. Synchr. Rad. 14, 326–330 (2007).
[Crossref]

Nucl. Instr. Meth. Phys. Res. B (2)

A. Liu, “Simulation of X-ray beam collimation by polycapillaries,” Nucl. Instr. Meth. Phys. Res. B 234, 555–562 (2005).
[Crossref]

T. Sun, Z. Liu, Y. Li, X. Lin, P. Luo, Q. Pan, and X. Ding, “Fine structures of divergence of polycapillary X-ray optics,” Nucl. Instr. Meth. Phys. Res. B 269, 2758–2761 (2011).
[Crossref]

Opt. Express (3)

Phys. Stat. Sol. A (1)

L. Kaihola, “Anomalous Soft X-Ray Reflectivity of Borosilicate Glass by Successive Grazing Reflections,” Phys. Stat. Sol. A 65, 163–166 (1981).
[Crossref]

Rev. Sci. Instr. (2)

L. Vincze, K. Janssens, F. Adams, A. Rindby, and P. Engström, “Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line,” Rev. Sci. Instr. 69, 3494–3503 (1998).
[Crossref]

L. Kipp, M. Boehme, H. Carstensen, R. Claessen, and M. Skibowski, “Compact grating spectrometer for inverse photoemission spectroscopy,” Rev. Sci. Instr. 68, 2144–2148 (1997).
[Crossref]

Rev. Sci. Instrum. (1)

A. Sokolov, P. Bischoff, F. Eggenstein, A. Erko, A. Gaupp, S. Künstner, M. Mast, J.-S. Schmidt, F. Senf, F. Siewert, T. Zeschke, and F. Schäfers, “At-wavelength metrology facility for soft X-ray reflection optics,” Rev. Sci. Instrum. 87, 052005 (2016).
[Crossref] [PubMed]

Science (1)

D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Laue Diffraction Experiments,” Science 263, 201–203 (1994).
[Crossref] [PubMed]

X-Ray Opt. Instrum. (1)

C. A. MacDonald, “Focusing Polycapillary Optics and Their Applications,” X-Ray Opt. Instrum. 2010, 867049 (2010).

Other (2)

S. H. Nowak, M. Petric, J. Buchriegler, A. Bjeoumikhov, Z. Bjeoumikhov, J. von Borany, F. Munnik, M. Radtke, A. D. Renno, U. Reinholz, O. Scharf, J. Tilgner, and R. Wedell, “Road to micron resolution with a color X-ray camera–polycapillary optics characterization,” arXiv:1705.08939 [physics.ins-det].

Optica Software, 613 W Delaware Ave, Urbana IL, 61801, USA, http://www.opticasoftware.com (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Shape of the PCL and its microscopic structure. Scales are indicated for both ends.
Fig. 2
Fig. 2 Scheme of the experimental setup to test the PCL. As opposed to the later use in spectrometry (inset in the lower left corner), the PCL is mounted on a tripod stage with a prolongation arm to measure the focal intensity distribution for tilt angles θ. The detector is rotated independently by an angle φ on a radius of 310 mm around r⃗ = 0 (center of mass symbols).
Fig. 3
Fig. 3 PCL transmission profile, measured in horizontal (red, incomplete recording of data) and vertical (black) direction across the output aperture. The gray area represents the equivalent for uniform transmission at 〈TΔz = 53.3% over the empirical width of 10.7 mm, which differs from the nominal diameter by less than 5%.
Fig. 4
Fig. 4 Typical examples of recorded focal intensity patterns, generated by the PCL at 36 eV under on-axis illumination (θ = 0.0°) on the left and in tilted orientation (θ = 0.5°) on the right. Diagonal arrows characterize in local detector coordinates (, ) the lateral size corresponding to wθ in the former and 2rθ in the latter case, see Eq. (1). Contours at the 50% (red) and 0.2% (black dashed) level illustrate FWHM and scattering, respectively.
Fig. 5
Fig. 5 Radial intensity distribution in the focal plane for tilts −1° ≤ θ ≤ +1°, scanned by an 0.1 mm wide pinhole (color code). The annular patterns peak on the “ring radius” rθ (black dashed lines). Measured / mirrored (black / gray dots) and fitted (red) data define the “full focus envelope” 2rθ + wθ.
Fig. 6
Fig. 6 Simulated focal intensity pattern for tilt angles θ up to 1.0°, using an incident beam of 11.2 mm in diameter (“full aperture”). The diagonal arrows denote the FWHM and outer annular dimension 2rθ + wθ, respectively. The net ring diameter is given in the left lower corner. Each plot is composed from the output of ≈ 150 randomly distributed capillaries.
Fig. 7
Fig. 7 Capture efficiency (=totally detected power) as a function of the radial focal plane coordinate (see Fig. 5) on the left and estimated output beam divergence for a Gaussian primary source of src . ( 1 ) (FWHM) in size on the right. The data (+) and their interpolated function (red curve) refer to the simulation from Fig. 6 in the ray-traced full aperture limit. The spectrometer is designed with Δ β cap . ( o ) = 16 mrad.
Fig. 8
Fig. 8 Side view of the planned spectrometer in optical coordinates (Tab. 3). The real source equals the sample position (red dot) in a distance R′1 from the RZP. Dashed / dotted lines correspond to the virtual source (gray dot), which is used for simulations.
Fig. 9
Fig. 9 Calculated laminar grating structure in true scale with respect to the lateral (x, y) dimensions. Lands are colored in black, grooves in yellow. Their constant profile parameters are optimized for maximal on-axis (+1)st order diffraction efficiency at the geometrical center X0.
Fig. 10
Fig. 10 Spectrometer resolution for the nominal source size of 0.8 mm (FWHM) on the left and for the design energy but a variable diameter of the emission region on the right, both simulated by ray tracing. The standard error budget for the grating (see text) is included.
Fig. 11
Fig. 11 Measured transmission of the polycapillary half lens between approximately 30 eV and 1750 eV, before (black) and after (red) an annealing procedure to remove dust etc.
Fig. 12
Fig. 12 Test spectrum around 36 eV as simulated by ray tracing (black dots), composed from 6 equidistant photon energies with an intrinsic bandwidth of 0.25 eV. Note that the spots are artificially displaced in the direction perpendicular to the zdet. axis, to illustrate the dispersion function zdet.(E). The spatial resolution is indicated by the FWHM ellipse (dark red curve).

Tables (4)

Tables Icon

Table 1 Captured emission (FWHM) from primary source

Tables Icon

Table 2 Lossless captured étendue (Eq. 3) in units of [μm2]

Tables Icon

Table 3 Instrumental design parameters, according to Fig. 8

Tables Icon

Table 4 Grating error budget in 6D for ΔE ≤ 0.4 eV/0.5 eV

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I θ ( r ˜ ) a θ ( 1 + b θ z ˜ 3 ) exp [ 4 ln 2 ( w θ 2 ( r ˜ r θ ) ) 2 ] with r ˜ 2 y ˜ 2 + z ˜ 2
focus ( cap . ) = [ cap . ( in ) ] 2 + [ F Δ β cap . ( i ) ] 2 Δ β cap . ( i ) = ( 10 ± 4 ) mrad
A src . ( 1 ) × Ω cap . ( o ) = [ π src . ( c . ) ( src . ( 1 . ) ) sin ( Δ β cap . ( o ) ( src . ( 1 . ) ) / 4 ) ] 2 ,
d E / d z det . = 0.79 eV / mm + 𝒪 ( z det . 2 ) at E E 0
Δ E = n = 0 4 c n ( E E 0 ) n for 30 eV E 40 eV

Metrics