Abstract

We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform

Shuang Zheng, Zhengsen Ruan, Shengqian Gao, Yun Long, Shimao Li, Mingbo He, Nan Zhou, Jing Du, Li Shen, Xinlun Cai, and Jian Wang
Opt. Express 25(21) 25655-25662 (2017)

Electromagnetically induced transparency in hybrid plasmonic-dielectric system

Bin Tang, Lei Dai, and Chun Jiang
Opt. Express 19(2) 628-637 (2011)

Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators

Huaiqing Liu, Guobin Ren, Yixiao Gao, Yudong Lian, Yang Qi, and Shuisheng Jian
Appl. Opt. 54(13) 3918-3924 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
    [Crossref]
  2. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [Crossref] [PubMed]
  3. C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).
    [Crossref] [PubMed]
  4. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
    [Crossref]
  5. C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
    [Crossref]
  6. M. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273 (2001).
    [Crossref] [PubMed]
  7. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
    [Crossref]
  8. T. Oishi and M. Tomita, “Inverted coupled-resonator-induced transparency,” Phys. Rev. A 88, 013813 (2013).
    [Crossref]
  9. H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
    [Crossref] [PubMed]
  10. H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
    [Crossref]
  11. D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [Crossref]
  12. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref] [PubMed]
  13. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33, 1978–1980 (2008).
    [Crossref] [PubMed]
  14. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [Crossref] [PubMed]
  15. Y. Zhang, S. Darmawan, L. Tobing, T. Mei, and D. Zhang, “Coupled resonator-induced transparency in ring-bus-ring mach-zehnder interferometer,” J. Opt. Soc. Am. B 28, 28–36 (2011).
    [Crossref]
  16. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
    [Crossref]
  17. Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22, 3219–3227 (2014).
    [Crossref] [PubMed]
  18. Z. Zhang, G. I. Ng, T. Hu, H. Qiu, X. Guo, M. S. Rouifed, C. Liu, and H. Wang, “Electromagnetically induced transparency-like effect in microring-bragg gratings based coupling resonant system,” Opt. Express 24, 25665–25675 (2016).
    [Crossref] [PubMed]
  19. A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable fano resonance,” APL Photonics 2, 096101 (2017).
    [Crossref]
  20. A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
    [Crossref]
  21. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
    [Crossref]
  22. A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84–92 (2016).
    [Crossref]
  23. A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
    [Crossref]
  24. B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).
  25. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
    [Crossref]
  26. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
    [Crossref]
  27. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
    [Crossref] [PubMed]

2017 (3)

H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
[Crossref]

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable fano resonance,” APL Photonics 2, 096101 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

2016 (3)

Z. Zhang, G. I. Ng, T. Hu, H. Qiu, X. Guo, M. S. Rouifed, C. Liu, and H. Wang, “Electromagnetically induced transparency-like effect in microring-bragg gratings based coupling resonant system,” Opt. Express 24, 25665–25675 (2016).
[Crossref] [PubMed]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84–92 (2016).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

2015 (1)

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

T. Oishi and M. Tomita, “Inverted coupled-resonator-induced transparency,” Phys. Rev. A 88, 013813 (2013).
[Crossref]

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
[Crossref]

2011 (1)

2010 (1)

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
[Crossref]

2009 (3)

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
[Crossref] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
[Crossref]

2004 (1)

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

2001 (1)

M. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273 (2001).
[Crossref] [PubMed]

2000 (1)

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

1998 (1)

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Beausoleil, R. G.

Bienstman, P.

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
[Crossref]

Blatt, R.

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Bogaerts, W.

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable fano resonance,” APL Photonics 2, 096101 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84–92 (2016).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Caluwaerts, K.

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Chen, J.

Chen, W.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Dambre, J.

Darmawan, S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Eschner, J.

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Fedeli, J.-M.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Fiers, M.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
[Crossref]

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Geng, Z.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Ginste, D. V.

Guo, X.

Heyn, P.

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

Hu, T.

Huang, Q.

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84–92 (2016).
[Crossref]

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22, 3219–3227 (2014).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

M. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273 (2001).
[Crossref] [PubMed]

Jiang, Y.

H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
[Crossref]

Jing, H.

H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Khurgin, J. B.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
[Crossref]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Leibfried, D.

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Li, A.

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable fano resonance,” APL Photonics 2, 096101 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84–92 (2016).
[Crossref]

Li, Q.

Li, Z.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Liu, C.

Lü, H.

H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
[Crossref]

Lü, X.-Y.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Lukin, M.

M. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273 (2001).
[Crossref] [PubMed]

Lukin, M. D.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Mei, T.

Mundt, A.

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Ng, G. I.

Nori, F.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).

Oishi, T.

T. Oishi and M. Tomita, “Inverted coupled-resonator-induced transparency,” Phys. Rev. A 88, 013813 (2013).
[Crossref]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).

Özdemir, S. K.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Peng, B.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).

Peng, C.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Qiu, H.

Qiu, M.

Roos, C.

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Rosenberger, A.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Rouifed, M. S.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Schmidt-Kaler, F.

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Schrauwen, B.

Scully, M. O.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Shu, Z.

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Song, G.

Song, M.

Su, Y.

Tobing, L.

Tomita, M.

T. Oishi and M. Tomita, “Inverted coupled-resonator-induced transparency,” Phys. Rev. A 88, 013813 (2013).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Vaerenbergh, T.

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

Velichansky, V. L.

Wang, H.

Wang, J.

Wang, Y.-Z.

H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
[Crossref]

Willner, A. E.

Wong, C. W.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
[Crossref]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Wu, T.

Xia, J.

Xu, A.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Yang, L.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
[Crossref]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Yu, J.

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
[Crossref]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Zhang, D.

Zhang, J.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Zhang, L.

Zhang, Y.

Zhang, Z.

Zou, L.

APL Photonics (1)

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable fano resonance,” APL Photonics 2, 096101 (2017).
[Crossref]

Electron. Lett. (1)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform epixfab,” Electron. Lett. 45, 581–582 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to electromagnetically induced transparency,” IEEE J. Sel. Top. Quantum Electron. 16, 288–294 (2010).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10, 420–431 (2016).
[Crossref]

Nature (1)

M. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Photonics Res. (2)

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm,” Photonics Res. 4, 84–92 (2016).
[Crossref]

H. Lü, Y. Jiang, Y.-Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photonics Res. 5, 367–371 (2017).
[Crossref]

Phys. Rev. A (2)

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

T. Oishi and M. Tomita, “Inverted coupled-resonator-induced transparency,” Phys. Rev. A 88, 013813 (2013).
[Crossref]

Phys. Rev. Lett. (4)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett. 85, 5547 (2000).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[Crossref]

Sci. Rep. (1)

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Other (1)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” arXiv preprint arXiv:1404.5941 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The spectral characteristics of EIT based on Fig. 1 from [1]. It will generate an ultra narrow window in the transmission or absorption spectrum. And the phase response or index profile shows an abrupt change within this window.

Fig. 2
Fig. 2

Conceptual schematics of the complete device and the embedded FP cavity formed by two reflectors are given in (a) and (c), while (b) and (d) show the concrete schematics of them where the loop-ended MZI reflectors are included. P.S. stands for phase shifter.

Fig. 3
Fig. 3

Simulated tunability of the reflector. Note the difference of the power reflectivity at the beginning state (Δϕ = 0) for perfect 50/50 directional couplers (power coupling coefficient κ = 0.5) and imperfect directional couplers.

Fig. 4
Fig. 4

Simulated output at the drop port of the device. Without any reflections, we see a Lorentzian-shaped resonance. Increasing one reflector’s reflectivity leads to normal resonance splitting (a); When the second reflector also introduces reflection, a Fano resonance appears from the interference between a FP mode and a ring resonance (b); An EIT like spectrum can be generated by precisely adjusting the reflectors’ reflectivities (c).A zoom view of one resonance (d).

Fig. 5
Fig. 5

Tunability and phase response of the ring with two reflectors. By tuning the relative phase shift of the reflectors, we can get various EIT resonances. The extinction ratio can be over 55 dB and the phase change can be as large as 0.96 pi within 0.01 nm bandwidth. This can be translated to a group index around 300 and a Q factor of this EIT peak around 1.54 × 105.

Fig. 6
Fig. 6

Microscopic images of our devices (a) and a zoom view of a single device (b).

Fig. 7
Fig. 7

Measured transmission spectra corresponding with the simulated spectra shown in Fig. 4. (a) presents the cases of Lorentzian-shaped resonance and normal resonance splitting where only one reflector introduces reflection. (b) indicates the Fano resonances when both reflectors introduce reflections. (c) gives the spectrum with EIT resonance. (d) provides a zoom view of one resonance in (c). It shows a bandwidth around 0.015 nm, or a Q factor around 1 × 105. All the measured spectra match well with simulations.

Fig. 8
Fig. 8

Measured phase response for the Lorentzian-shaped resonance (a), normal resonance splitting (b) and EIT resonance (c). When EIT is present, an abrupt phase change happen within its ultra narrow bandwidth. The largest phase change can be 0.95π within 0.015 nm span. This means a group index of 200 and a Q factor of 1 × 105.

Fig. 9
Fig. 9

Measured group delay of the spectrum shown in Fig. 8(c). At the EIT peak, there is a larger group delay at 4100 ps, compared to the background level at 3200 ps, the EIT slows light down at 1100 ps. We also notice some dips at the delay spectrum at the resonances showing splitting. This is the so-called fast light phenomenon. Due to our tunability of the internal reflections, we can achieve both tunable fast light and slow light.