Abstract

We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppbW/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppbW/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance optimization of hollow-core fiber photothermal gas sensors

Yuechuan Lin, Wei Jin, Fan Yang, Yanzhen Tan, and Hoi Lut Ho
Opt. Lett. 42(22) 4712-4715 (2017)

Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances

Andres Garcia-Ruiz, Juan Pastor-Graells, Hugo F. Martins, Kenny Hey Tow, Luc Thévenaz, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 25(3) 1789-1805 (2017)

Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR

Shuai Wang, Xinyu Fan, Qingwen Liu, and Zuyuan He
Opt. Express 23(26) 33301-33309 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
    [Crossref]
  2. L. Thevenaz, “Review and progress on distributed fibre sensing,” (Optical Society of America, 2006), p. ThC1.
  3. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [Crossref] [PubMed]
  4. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
    [Crossref]
  5. W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
    [Crossref]
  6. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref] [PubMed]
  7. A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
    [Crossref]
  8. C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515 (1980).
    [Crossref]
  9. Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
    [Crossref] [PubMed]
  10. Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fibre photothermal gas sensors,” accepted to be published by Opt. Lett. (2017).
  11. NKT Photonics, “HC-1550-02 data sheet”.
  12. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, and J. Knight, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref] [PubMed]
  13. L. Xiao, M. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
    [Crossref]
  14. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
    [Crossref] [PubMed]
  15. W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693 (1981).
    [Crossref]
  16. V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers,” J. Lightwave Technol. 27, 3783–3789 (2009).
    [Crossref]
  17. X. Fang, “Fiber-optic distributed sensing by a two-loop Sagnac interferometer,” Opt. Lett. 21, 444–446 (1996).
    [Crossref] [PubMed]
  18. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).
  19. M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.
  20. A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
    [Crossref]
  21. A. D. Kersey, A. Dandridge, and A. B. Tveten, “Time-division multiplexing of interferometric fiber sensors using passive phase-generated carrier interrogation,” Opt. Lett. 12, 775–777 (1987).
    [Crossref] [PubMed]
  22. A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
    [Crossref]
  23. K. Koo, A. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
    [Crossref]
  24. B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber. Technol. 6, 388–399 (2000).
    [Crossref]
  25. X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, and M. Zhang, “Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR,” Opt. Lett. 42, 442 (2017).
    [Crossref] [PubMed]
  26. F. Liu, S. Xie, X. Qiu, X. Wang, S. Cao, M. Qin, X. He, B. Xie, X. Zheng, and M. Zhang, “Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation,” J. Lightwave Technol. 34, 5453–5461 (2016).
    [Crossref]
  27. K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commnun. 120, 34–38 (1995).
    [Crossref]
  28. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [Crossref]
  29. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [Crossref]
  30. J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57, 182–189 (2008).
    [Crossref]
  31. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE 66, 51–83 (1978).
    [Crossref]
  32. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  33. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
    [Crossref]
  34. Y. Tan, W. Jin, F. Yang, Y. Qi, C. Zhang, Y. Lin, and H. L. Ho, “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” J. Lightwave Technol. 35, 2887–2893 (2017).
    [Crossref]
  35. V. Dangui, M. J. Digonnet, and G. S. Kino, “Determination of the mode reflection coefficient in air-core photonic bandgap fibers,” Opt. Express 15, 5342–5359 (2007).
    [Crossref] [PubMed]
  36. F. Couny, F. Benabid, and P. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
    [Crossref]
  37. R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” J. Lightwave Technol. 27, 1590–1596 (2009).
    [Crossref]
  38. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003).
    [Crossref] [PubMed]
  39. M. Nakazawa, M. Tokuda, and N. Uchida, “Analyses of optical time-domain reflectometry for single-mode fibers and of polarization optical time-domain reflectometry for polarization-maintaining fibers,” Opt. Lett. 8, 130–132 (1983).
    [Crossref] [PubMed]
  40. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
    [Crossref]
  41. H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
    [Crossref]
  42. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D. 37, R197–R216 (2004).
    [Crossref]
  43. A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10, R75 (1999).
    [Crossref]
  44. Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298 (2010).
    [Crossref]
  45. F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2017).
    [Crossref]
  46. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5µm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref] [PubMed]
  47. M. El-Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, and Y. Messaddeq, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [Crossref] [PubMed]
  48. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
    [Crossref]
  49. L. Shiloh and A. Eyal, “Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry,” Opt. Express 23, 4296–4306 (2015).
    [Crossref] [PubMed]
  50. T. Parker, S. Shatalin, and M. Farhadiroushan, “Distributed acoustic sensing a new tool for seismic applications,” First Break 32, 61–69 (2014).
    [Crossref]
  51. P. Golacki, A. Masoudi, K. Holland, and T. Newson, “Distributed optical fibre acoustic sensors future applications in audio and acoustics engineering,” presented at ACOUSTICS 2016, UK, 05 – 08 Sep 2016 (2016).
  52. H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41, 5648–5651 (2016).
    [Crossref] [PubMed]

2017 (4)

2016 (3)

2015 (2)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

L. Shiloh and A. Eyal, “Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry,” Opt. Express 23, 4296–4306 (2015).
[Crossref] [PubMed]

2014 (1)

T. Parker, S. Shatalin, and M. Farhadiroushan, “Distributed acoustic sensing a new tool for seismic applications,” First Break 32, 61–69 (2014).
[Crossref]

2013 (1)

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

2012 (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

2011 (3)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5µm,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

2008 (1)

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57, 182–189 (2008).
[Crossref]

2007 (4)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[Crossref]

F. Couny, F. Benabid, and P. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[Crossref]

V. Dangui, M. J. Digonnet, and G. S. Kino, “Determination of the mode reflection coefficient in air-core photonic bandgap fibers,” Opt. Express 15, 5342–5359 (2007).
[Crossref] [PubMed]

L. Xiao, M. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
[Crossref]

2005 (2)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, and J. Knight, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

2004 (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D. 37, R197–R216 (2004).
[Crossref]

2003 (1)

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

2000 (1)

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber. Technol. 6, 388–399 (2000).
[Crossref]

1999 (1)

A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10, R75 (1999).
[Crossref]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

1996 (1)

1995 (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commnun. 120, 34–38 (1995).
[Crossref]

1994 (1)

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
[Crossref]

1987 (2)

A. D. Kersey, A. Dandridge, and A. B. Tveten, “Time-division multiplexing of interferometric fiber sensors using passive phase-generated carrier interrogation,” Opt. Lett. 12, 775–777 (1987).
[Crossref] [PubMed]

A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
[Crossref]

1983 (1)

1982 (3)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[Crossref]

K. Koo, A. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[Crossref]

1981 (1)

W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693 (1981).
[Crossref]

1980 (1)

C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515 (1980).
[Crossref]

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE 66, 51–83 (1978).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Asakura, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

Barabadi, B.

Benabid, F.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, and P. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[Crossref]

Biriukov, A. S.

Birks, T.

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Cao, S.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Cao, Y. C.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Corredera, P.

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Couny, F.

F. Couny, F. Benabid, and P. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[Crossref]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, and J. Knight, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

Creedon, K. J.

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D. 37, R197–R216 (2004).
[Crossref]

A. D. Kersey, A. Dandridge, and A. B. Tveten, “Time-division multiplexing of interferometric fiber sensors using passive phase-generated carrier interrogation,” Opt. Lett. 12, 775–777 (1987).
[Crossref] [PubMed]

A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
[Crossref]

K. Koo, A. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[Crossref]

A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[Crossref]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Dangui, V.

Davis, C. C.

C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515 (1980).
[Crossref]

Demokan, M.

Dianov, E. M.

Digonnet, M. J.

Digonnet, M. J. F.

V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers,” J. Lightwave Technol. 27, 3783–3789 (2009).
[Crossref]

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber. Technol. 6, 388–399 (2000).
[Crossref]

Eickhoff, W.

W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693 (1981).
[Crossref]

El-Amraoui, M.

Eyal, A.

Fang, X.

Farhadiroushan, M.

T. Parker, S. Shatalin, and M. Farhadiroushan, “Distributed acoustic sensing a new tool for seismic applications,” First Break 32, 61–69 (2014).
[Crossref]

Farr, L.

Fatome, J.

Fernandez-Ruiz, M. R.

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Fortier, C.

Furukawa, S.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
[Crossref]

Gabai, H.

Gadret, G.

Garcia-Ruiz, A.

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Giallorenzi, T.

A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[Crossref]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Golacki, P.

P. Golacki, A. Masoudi, K. Holland, and T. Newson, “Distributed optical fibre acoustic sensors future applications in audio and acoustics engineering,” presented at ACOUSTICS 2016, UK, 05 – 08 Sep 2016 (2016).

Gonzalez-Herraez, M.

Gu, L.

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE 66, 51–83 (1978).
[Crossref]

Hasegawa, T.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

He, X.

Herraez, M. G.

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Hielscher, A. H.

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57, 182–189 (2008).
[Crossref]

Ho, H. L.

Y. Tan, W. Jin, F. Yang, Y. Qi, C. Zhang, Y. Lin, and H. L. Ho, “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” J. Lightwave Technol. 35, 2887–2893 (2017).
[Crossref]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298 (2010).
[Crossref]

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fibre photothermal gas sensors,” accepted to be published by Opt. Lett. (2017).

Holland, K.

P. Golacki, A. Masoudi, K. Holland, and T. Newson, “Distributed optical fibre acoustic sensors future applications in audio and acoustics engineering,” presented at ACOUSTICS 2016, UK, 05 – 08 Sep 2016 (2016).

Hoo, Y. L.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298 (2010).
[Crossref]

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003).
[Crossref] [PubMed]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

Inoue, K.

K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commnun. 120, 34–38 (1995).
[Crossref]

Izumita, H.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
[Crossref]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Jin, W.

F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2017).
[Crossref]

Y. Tan, W. Jin, F. Yang, Y. Qi, C. Zhang, Y. Lin, and H. L. Ho, “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” J. Lightwave Technol. 35, 2887–2893 (2017).
[Crossref]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298 (2010).
[Crossref]

L. Xiao, M. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
[Crossref]

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fibre photothermal gas sensors,” accepted to be published by Opt. Lett. (2017).

Ju, J.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

Jules, J.-C.

Kersey, A.

A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
[Crossref]

Kersey, A. D.

Kibler, B.

Kino, G. S.

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D. 37, R197–R216 (2004).
[Crossref]

Knight, J.

Koo, K.

K. Koo, A. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Kosolapov, A. F.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

Lasker, J. M.

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57, 182–189 (2008).
[Crossref]

Light, P.

F. Couny, F. Benabid, and P. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[Crossref]

Lin, Y.

F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2017).
[Crossref]

Y. Tan, W. Jin, F. Yang, Y. Qi, C. Zhang, Y. Lin, and H. L. Ho, “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” J. Lightwave Technol. 35, 2887–2893 (2017).
[Crossref]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fibre photothermal gas sensors,” accepted to be published by Opt. Lett. (2017).

Liu, F.

Liu, S.

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298 (2010).
[Crossref]

Liu, Y.

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

Lu, Y.

Lut, H.

Ma, J.

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

Mangan, B.

Martin-Lopez, S.

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Martins, H. F.

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Masciotti, J. M.

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57, 182–189 (2008).
[Crossref]

Mason, M.

Masoudi, A.

P. Golacki, A. Masoudi, K. Holland, and T. Newson, “Distributed optical fibre acoustic sensors future applications in audio and acoustics engineering,” presented at ACOUSTICS 2016, UK, 05 – 08 Sep 2016 (2016).

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Messaddeq, Y.

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Murayama, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

Nakagawa, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

Nakazawa, M.

Newson, T.

P. Golacki, A. Masoudi, K. Holland, and T. Newson, “Distributed optical fibre acoustic sensors future applications in audio and acoustics engineering,” presented at ACOUSTICS 2016, UK, 05 – 08 Sep 2016 (2016).

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

Okazaki, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

Ortega, A.

Parker, T.

T. Parker, S. Shatalin, and M. Farhadiroushan, “Distributed acoustic sensing a new tool for seismic applications,” First Break 32, 61–69 (2014).
[Crossref]

Pastor-Graells, J.

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

Plotnichenko, V. G.

Polacchini, C.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[Crossref]

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Pryamikov, A. D.

Qi, L. F.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

Qi, Y.

Qin, M.

Qiu, X.

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[Crossref]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

Roberts, P.

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

Rogers, A.

A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10, R75 (1999).
[Crossref]

Ruan, S. C.

Sabert, H.

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[Crossref]

Sankawa, I.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
[Crossref]

Semjonov, S. L.

Shatalin, S.

T. Parker, S. Shatalin, and M. Farhadiroushan, “Distributed acoustic sensing a new tool for seismic applications,” First Break 32, 61–69 (2014).
[Crossref]

Shi, C.

Shiloh, L.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

Sigel, G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

Skripatchev, I.

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Smektala, F.

Sumida, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

Tan, Y.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

Thevenaz, L.

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

L. Thevenaz, “Review and progress on distributed fibre sensing,” (Optical Society of America, 2006), p. ThC1.

Tokuda, M.

Tomlinson, A.

Tow, K. H.

Tveten, A.

A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
[Crossref]

K. Koo, A. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[Crossref]

A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[Crossref]

Tveten, A. B.

Uchida, N.

Vakoc, B. J.

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber. Technol. 6, 388–399 (2000).
[Crossref]

Wang, C.

F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2017).
[Crossref]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

Wang, D. N.

Wang, X.

Wang, Y.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[Crossref]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Williams, D.

Wynne, R. M.

Xiao, L.

Xie, B.

Xie, S.

Yang, F.

F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2017).
[Crossref]

Y. Tan, W. Jin, F. Yang, Y. Qi, C. Zhang, Y. Lin, and H. L. Ho, “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” J. Lightwave Technol. 35, 2887–2893 (2017).
[Crossref]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fibre photothermal gas sensors,” accepted to be published by Opt. Lett. (2017).

Yurek, A.

A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
[Crossref]

Zhang, C.

Zhang, M.

Zhao, C.-L.

Zheng, X.

Zhu, T.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36, 515 (1980).
[Crossref]

W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39, 693 (1981).
[Crossref]

K. Koo, A. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3 × 3) fiber directional couplers,” Appl. Phys. Lett. 41, 616–618 (1982).
[Crossref]

First Break (1)

T. Parker, S. Shatalin, and M. Farhadiroushan, “Distributed acoustic sensing a new tool for seismic applications,” First Break 32, 61–69 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Dandridge, A. Tveten, and T. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[Crossref]

IEEE Photon. Technol. Lett. (2)

F. Couny, F. Benabid, and P. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[Crossref]

Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photon. Technol. Lett. 22, 296–298 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. M. Masciotti, J. M. Lasker, and A. H. Hielscher, “Digital lock-in detection for discriminating multiple modulation frequencies with high accuracy and computational efficiency,” IEEE Trans. Instrum. Meas. 57, 182–189 (2008).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microw. Theory Techn. 30, 472–511 (1982).
[Crossref]

J. Lightwave Technol. (11)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[Crossref]

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12, 1230–1238 (1994).
[Crossref]

A. Dandridge, A. Tveten, A. Kersey, and A. Yurek, “Multiplexing of interferometric sensors using phase carrier techniques,” J. Lightwave Technol. 5, 947–952 (1987).
[Crossref]

F. Liu, S. Xie, X. Qiu, X. Wang, S. Cao, M. Qin, X. He, B. Xie, X. Zheng, and M. Zhang, “Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation,” J. Lightwave Technol. 34, 5453–5461 (2016).
[Crossref]

Y. Tan, W. Jin, F. Yang, Y. Qi, C. Zhang, Y. Lin, and H. L. Ho, “Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection,” J. Lightwave Technol. 35, 2887–2893 (2017).
[Crossref]

F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35, 3413–3424 (2017).
[Crossref]

L. Xiao, M. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007).
[Crossref]

R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” J. Lightwave Technol. 27, 1590–1596 (2009).
[Crossref]

V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers,” J. Lightwave Technol. 27, 3783–3789 (2009).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28, 3243–3249 (2010).

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

J. Phys. D. (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D. 37, R197–R216 (2004).
[Crossref]

Meas. Sci. Technol. (1)

A. Rogers, “Distributed optical-fibre sensing,” Meas. Sci. Technol. 10, R75 (1999).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Opt. Commnun. (1)

K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commnun. 120, 34–38 (1995).
[Crossref]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[Crossref]

Opt. Express (6)

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5µm,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

L. Shiloh and A. Eyal, “Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry,” Opt. Express 23, 4296–4306 (2015).
[Crossref] [PubMed]

M. El-Amraoui, J. Fatome, J.-C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. Polacchini, and Y. Messaddeq, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref] [PubMed]

A. Garcia-Ruiz, J. Pastor-Graells, H. F. Martins, K. H. Tow, L. Thevenaz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Opt. Express 25, 1789–1805 (2017).
[Crossref]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, and J. Knight, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

V. Dangui, M. J. Digonnet, and G. S. Kino, “Determination of the mode reflection coefficient in air-core photonic bandgap fibers,” Opt. Express 15, 5342–5359 (2007).
[Crossref] [PubMed]

Opt. Fiber. Technol. (2)

B. J. Vakoc, M. J. F. Digonnet, and G. S. Kino, “A folded configuration of a fiber Sagnac-based sensor array,” Opt. Fiber. Technol. 6, 388–399 (2000).
[Crossref]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber. Technol. 19, 741–759 (2013).
[Crossref]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Opt. Lett. (5)

Proceedings of the IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE 66, 51–83 (1978).
[Crossref]

Sci. Rep. (1)

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6, 39410 (2016).
[Crossref] [PubMed]

Sens. Actuator B-Chem. (1)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuator B-Chem. 108, 508–514 (2005).
[Crossref]

Sensors (2)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors 12, 8601–8639 (2012).
[Crossref] [PubMed]

Other (6)

L. Thevenaz, “Review and progress on distributed fibre sensing,” (Optical Society of America, 2006), p. ThC1.

Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fibre photothermal gas sensors,” accepted to be published by Opt. Lett. (2017).

NKT Photonics, “HC-1550-02 data sheet”.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. G. Herraez, A. Garcia-Ruiz, P. Corredera, J. Pastor-Graells, M. R. Fernandez-Ruiz, H. F. Martins, and S. Martin-Lopez, “Chirped-pulse phase-sensitive optical time domain reflectometry,” in Asia Communications and Photonics Conference (Optical Society of America, 2016), p. AF1A.

P. Golacki, A. Masoudi, K. Holland, and T. Newson, “Distributed optical fibre acoustic sensors future applications in audio and acoustics engineering,” presented at ACOUSTICS 2016, UK, 05 – 08 Sep 2016 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic drawing of a HC-PBF with a pump and a probe beam propagating within it. Inset: scanning electron microscope (SEM) cross-sectional image of a commercial HC-PBF (NKT HC-1550-02).

Fig. 2
Fig. 2

(a) PT phase modulation due to pump absorption over a section [z, z + dz] of HC-PBF. The backscattered probe beams shown as dashed blue lines are used to detect the distributed phase modulation, forming the basis for distributed gas sensing. (b) PT phase modulation over a length (Lt) of sensing HC-PBF sandwiched between the two SMFs. The back-reflected probe beams at the HC-PBF/SMF joints are used to detect the phase modulation, which forms the basis for quasi-distributed gas sensing. The line thickness of backscattered/reflected signal indicates the relative signal strength.

Fig. 3
Fig. 3

Schematic of the experimental set-up. The sensing could be either distributed (Case 1) or quasi-distributed sensing manner (Case 2). The green dashed arrows indicate the pump directions. AOM: acoustic-optic modulator; SMF: single-mode fibre; EDFA: erbium-doped amplifier; PD: photo-detector; PC: polarization controller; DFB: distributed feedback laser. WDM: wavelength-division multiplexer. OC: optical fibre coupler.

Fig. 4
Fig. 4

Illustration of pulse sequence at different locations in the system and sampling at the system output, for quasi-distributed sensing system. (a) trigger pulses for AOM; (b) dual pulses launched in to the sensing block with a temporal offset; (c) pulse waveform reflected from the sensing block; (d) data sampling at the PD output. The left-bottom corner indicates the coordinate directions.

Fig. 5
Fig. 5

Illustration of digital lock-in detection and subsequent processing to obtain the PT phase modulation signals.

Fig. 6
Fig. 6

A typical measured output from the PD for a quasi-distributed sensing system with two HC-PBF sensors.

Fig. 7
Fig. 7

The recovered frequency spectrums of the recovered PT phase modulation for (a) HC-PBF 1 with 7.8 mW pump power and ∼ 2700 ppm C2H2 in N2,(b) HC-PBF 2 with 55 mW pump power and ∼44 ppm C2H2 in N2. The dB re rad is define as 20log10(x rad/1rad). The measured magnitude of PT phase modulation is 0.05 rad (−26 dB re rad) for HC-PBF 1 and 0.13 rad (−17.7 dB re rad) for HC-PBF 2; (c) The spectrum of the recovered phase modulation for HC-PBF 2 when the pump was tuned to the center of the absorption line, away from the absorption line, and turned off. (d) The time domain waveforms of the recovered PT phase modulation for the two sensors.

Fig. 8
Fig. 8

Measured interfering backscattering traces with pump power was turned off. There are three sections labelled as P1, P2 and P3, corresponding to the spatial locations respectively at 131 m, 251 m and 335 m with the lengths of 131 m SMF, 120 m HC-PBF and 84 m HC-PBF. The upper diagram is the illustration of fibre alignment of sensing block. At P1, the mechanical splicing between an angle-cleaved SMF and HC-PBF is used. A ~116 m long HC-PBF is then mechanical spliced to a ∼3.4 m short HC-PBF (P2), which consists two ∼1.7 m gas-filled HC-PBF. Another ~80 m long HC-PBF was mechanically spliced at P2, whose end was connected by a ∼4.2 m gas-filled HC-PBF at P3.

Fig. 9
Fig. 9

The phase distribution along the sensing fibre. The upper diagram shows the fibre alignment and segments of sensing fibre. The position P1, P2 and P3 corresponds to the spatial location of 131 m, 251 m and 335 m, respectively. The displayed spatial locations range from 60 m to 338 m.

Fig. 10
Fig. 10

The phase distributed along the sensing fibre with: (a) pump wavelength tuned away from the absorption line; (b) pump beam turned off. The figures share the same color legend as that in Fig. 9.

Fig. 11
Fig. 11

The three dimension demonstration of gas presence at the spatial location P2.

Fig. 12
Fig. 12

The PT phase modulation signals in time and frequency domain (a) (c) for spatial location at P2 and (b) (d) for spatial location at P3. The signals have been filtered by a digital band-pass filter with central frequency of 500 Hz and bandwidth of 200 Hz. In (c), the signal level is 0.35 rad and the noise floor is 0.012 rad and 0.013 rad when the pump is tuned away from gas absorption and switched off, respectively. In (d), the signal level is 0.19 rad and noise floors are 0.02 rad and 0.01 rad, respectively. The all plots share the same legend shown in (a) as on: aligned to the center of absorption line, away: away from absorption and off: switched off.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ p = P 0 e α c z e α 0 C z Δ ϕ ¯ 0 α 0 C d z
I ˜ i ( t ) = I i { 1 + v i c o s [ 2 π Δ f t + Δ ϕ p , i ( t ) + φ i ] }

Metrics