Abstract

We demonstrate an optical distance sensor integrated on a silicon photonic chip with a footprint of well below 1 mm2. The integrated system comprises a heterodyne receiver structure with tunable power splitting ratio and on-chip photodetectors. The functionality of the device is demonstrated in a synthetic-wavelength interferometry experiment using frequency combs as optical sources. We obtain accurate and fast distance measurements with an unambiguity range of 3.75 mm, a root-mean-square error of 3.4 µm and acquisition times of 14 µs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension

Claudius Weimann, Markus Fratz, Harald Wölfelschneider, Wolfgang Freude, Heinrich Höfler, and Christian Koos
Appl. Opt. 54(20) 6334-6343 (2015)

Foundry fabricated photonic integrated circuit optical phase lock loop

Katarzyna Bałakier, Martyn J. Fice, Lalitha Ponnampalam, Chris S. Graham, Adrian Wonfor, Alwyn J. Seeds, and Cyril C. Renaud
Opt. Express 25(15) 16888-16897 (2017)

Optical coherence tomography system mass-producible on a silicon photonic chip

Simon Schneider, Matthias Lauermann, Philipp-Immanuel Dietrich, Claudius Weimann, Wolfgang Freude, and Christian Koos
Opt. Express 24(2) 1573-1586 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Ulbers, “A sensor for dimensional metrology with an interferometer using integrated optics technology,” Measurement 9(1), 13–16 (1991).
    [Crossref]
  2. T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
    [Crossref]
  3. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  4. M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
    [Crossref]
  5. D. Hofstetter, H. P. Zappe, and R. Dandliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers,” J. Lightwave Technol. 15(4), 663–670 (1997).
    [Crossref]
  6. A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
    [Crossref]
  7. H. Toda, M. Haruna, and H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9(5), 683–687 (1991).
    [Crossref]
  8. Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express 21(11), 13342–13350 (2013).
    [Crossref] [PubMed]
  9. Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, “Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters,” Appl. Opt. 52(10), 2145–2152 (2013).
    [Crossref] [PubMed]
  10. M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
    [Crossref] [PubMed]
  11. S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573–1586 (2016).
    [Crossref] [PubMed]
  12. D. B. Cole, C. Sorace-Agaskar, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated heterodyne interferometer with on-chip modulators and detectors,” Opt. Lett. 40(13), 3097–3100 (2015).
    [Crossref] [PubMed]
  13. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express 23(4), 5117–5125 (2015).
    [Crossref] [PubMed]
  14. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  15. V. Ataie, P. P. Kuo, A. Wiberg, Z. Tong, C. Huynh, N. Alic, and S. Radic, “Ultrafast Absolute Ranging by Coherent Parametric Comb,” in Optical Fiber Communication Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3D.2.
    [Crossref]
  16. C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
    [Crossref]
  17. D. Ganin, P. Trocha, M. Pfeiffer, M. Karpov, A. Kordts, J. Krockenberger, P. Marin-Palomo, S. Wolf, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast Dual-Comb Distance Metrology Using Dissipative Kerr Solitons,” in Conference on Lasers and Electro-Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper STh4L.6.
    [Crossref]
  18. C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in Conference on Lasers and Electro-Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh4O.3.
    [Crossref]
  19. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [Crossref] [PubMed]
  20. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
    [Crossref]
  21. C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
    [Crossref] [PubMed]
  22. C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. L. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. C. Schindler, D. L. Elder, T. Wahlbrink, and J. Bolten, “Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
    [Crossref]
  23. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref] [PubMed]
  24. V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
    [Crossref]
  25. P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” https://arXiv:1707.05969 (2017).
  26. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, and Y. Zhang, “A 25 Gb/s silicon photonics platform,” https://arXiv:1203.0767 (2012).
  27. C. Weimann, D. Meier, S. Wolf, Y. Schleitzer, M. Totzeck, A. Heinrich, F. Hoeller, J. Leuthold, W. Freude, and C. Koos, “Fast high-precision distance measurements on scattering technical surfaces using frequency combs,” in Conference on Lasers and Electro-Optics 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.3.
    [Crossref]
  28. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  29. G. Margheri, C. Giunti, S. Zatti, S. Manhart, and R. Maurer, “Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets,” Appl. Opt. 36(25), 6211–6216 (1997).
    [Crossref] [PubMed]
  30. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
    [Crossref]
  31. C. Weimann, M. Fratz, H. Wölfelschneider, W. Freude, H. Höfler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension,” Appl. Opt. 54(20), 6334–6343 (2015).
    [Crossref] [PubMed]
  32. C. Weimann, F. Hoeller, and C. Koos, “High-precision laser ranging for industrial metrology with dual-color electro-optic frequency combs,” in 116th Annual DGaO Conference 2015, talk A4.
  33. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
    [Crossref] [PubMed]
  34. Corning, SMF-28e + Optical Fiber Product Information, 2014.
  35. R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
    [Crossref]
  36. P.-E. Dupouy, M. Büchner, P. Paquier, G. Trénec, and J. Vigué, “Interferometric measurement of the temperature dependence of an index of refraction: application to fused silica,” Appl. Opt. 49(4), 678–682 (2010).
    [Crossref] [PubMed]
  37. A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
    [Crossref]
  38. L. S. Schuetz, J. H. Cole, J. Jarzynski, N. Lagakos, and J. A. Bucaro, “Dynamic thermal response of single-mode optical fiber for interferometric sensors,” Appl. Opt. 22(3), 478–483 (1983).
    [Crossref] [PubMed]
  39. U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta: International Journal of Optics 33(10), 1221–1225 (1986).
    [Crossref]
  40. P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
    [Crossref] [PubMed]
  41. E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
    [Crossref] [PubMed]
  42. M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-Chip Integration of Lasers and Silicon Photonics by Photonic Wire Bonding,” in Conference on Lasers and Electro-Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STu2F.2.
    [Crossref]
  43. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
    [Crossref]
  44. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  45. J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
    [Crossref]
  46. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd ed. (McGraw-Hill, 2003).

2017 (1)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (5)

2014 (2)

2013 (4)

Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, “Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters,” Appl. Opt. 52(10), 2145–2152 (2013).
[Crossref] [PubMed]

Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express 21(11), 13342–13350 (2013).
[Crossref] [PubMed]

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (2)

2009 (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2007 (2)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

2003 (2)

P. Pavliček and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref] [PubMed]

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

2001 (1)

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

1997 (3)

D. Hofstetter, H. P. Zappe, and R. Dandliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers,” J. Lightwave Technol. 15(4), 663–670 (1997).
[Crossref]

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

G. Margheri, C. Giunti, S. Zatti, S. Manhart, and R. Maurer, “Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets,” Appl. Opt. 36(25), 6211–6216 (1997).
[Crossref] [PubMed]

1994 (1)

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

1991 (2)

G. Ulbers, “A sensor for dimensional metrology with an interferometer using integrated optics technology,” Measurement 9(1), 13–16 (1991).
[Crossref]

H. Toda, M. Haruna, and H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9(5), 683–687 (1991).
[Crossref]

1986 (1)

U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta: International Journal of Optics 33(10), 1221–1225 (1986).
[Crossref]

1983 (1)

Abiri, B.

Aflatouni, F.

Alloatti, L.

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Baets, R.

Balthasar, G.

Bartolo, R. E.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Baumann, E.

Bekele, D.

Billah, M. R.

Boeck, Y.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

Bogaerts, W.

Bolten, J.

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
[Crossref]

Bucaro, J. A.

Büchner, M.

Coddington, I.

Cole, D. B.

Cole, J. H.

Coolbaugh, D.

Dalton, L.

Dalton, L. R.

Dandliker, R.

D. Hofstetter, H. P. Zappe, and R. Dandliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers,” J. Lightwave Technol. 15(4), 663–670 (1997).
[Crossref]

Dandridge, A.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

De Koninck, Y.

Deschênes, J.-D.

Dietrich, P.-I.

Diez, C. A.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

Ding, R.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Dottermusch, S.

Dupouy, P.-E.

Elder, D.

Elder, D. L.

Fratz, M.

Freude, W.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573–1586 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. L. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. C. Schindler, D. L. Elder, T. Wahlbrink, and J. Bolten, “Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
[Crossref] [PubMed]

C. Weimann, M. Fratz, H. Wölfelschneider, W. Freude, H. Höfler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension,” Appl. Opt. 54(20), 6334–6343 (2015).
[Crossref] [PubMed]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
[Crossref]

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

Geiselmann, M.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
[Crossref]

Giesecke, A. L.

Giorgetta, F. R.

Giunti, C.

Goedecke, M. L.

Gogineni, S. P.

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Haimov, S.

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Hajimiri, A.

Harris, N. C.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Hartmann, W.

Haruna, M.

H. Toda, M. Haruna, and H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9(5), 683–687 (1991).
[Crossref]

Heni, W.

Herrmann, H.

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

Hillerkuss, D.

Hochberg, M.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Hoeller, F.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

Höfler, H.

Hofmann, A.

Hofstetter, D.

D. Hofstetter, H. P. Zappe, and R. Dandliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers,” J. Lightwave Technol. 15(4), 663–670 (1997).
[Crossref]

Hollenbach, U.

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Hoose, T.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

Jarzynski, J.

Jordan, M.

Jost, J. D.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
[Crossref]

Karpov, M.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Keyvaninia, S.

Kippenberg, T. J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
[Crossref]

Knopf, A.

Koeber, S.

Koehnle, K.

Kohl, M.

Koos, C.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573–1586 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. L. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. C. Schindler, D. L. Elder, T. Wahlbrink, and J. Bolten, “Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
[Crossref] [PubMed]

C. Weimann, M. Fratz, H. Wölfelschneider, W. Freude, H. Höfler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension,” Appl. Opt. 54(20), 6334–6343 (2015).
[Crossref] [PubMed]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding,” J. Lightwave Technol. 33(4), 755–760 (2015).
[Crossref]

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Korn, D.

Krüger, U.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Kutuvantavida, Y.

Lagakos, N.

Lambert, E.

Langkilde, G.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Lauermann, M.

Leake, G.

Leuthold, J.

Li, Y.

Lindenmann, N.

Liu, T.-A.

Lucas, E.

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
[Crossref]

Madsen, T. L.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Manhart, S.

Margheri, G.

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Matsumoto, H.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Maurer, R.

Melikov, A. K.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Melikyan, A.

Mohr, J.

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Moresco, M.

Muehlbrandt, S.

Nakajima, H.

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

Nishihara, H.

H. Toda, M. Haruna, and H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9(5), 683–687 (1991).
[Crossref]

Novack, A.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Oka, T.

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Onanuga, T. P.

Palmer, R.

Paquier, P.

Pavlicek, P.

Pfeiffer, M. H. P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Pfeifle, J.

Rekhi, A.

Rembe, C.

Ricken, R.

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

Roelkens, G.

Ronnau, J.

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Rubiyanto, A.

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

Schindler, P. C.

Schleitzer, Y.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

Schmogrow, R.

Schneider, S.

Schuetz, L. S.

Sohler, W.

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

Sorace-Agaskar, C.

Soubusta, J.

Spruck, B.

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

Swann, W. C.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Takahashi, S.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Takamasu, K.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Tian, F.

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

Toda, H.

H. Toda, M. Haruna, and H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9(5), 683–687 (1991).
[Crossref]

Trénec, G.

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Tsugai, M.

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Tveten, A. B.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Ulbers, G.

G. Ulbers, “A sensor for dimensional metrology with an interferometer using integrated optics technology,” Measurement 9(1), 13–16 (1991).
[Crossref]

Ummethala, S.

Van Thourhout, D.

Vermeulen, D.

Verstuyft, S.

Vigué, J.

Vijayan, K.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Vry, U.

U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta: International Journal of Optics 33(10), 1221–1225 (1986).
[Crossref]

Wahlbrink, T.

Wallrabe, U.

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Wang, X.

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Watts, M. R.

Weimann, C.

M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
[Crossref] [PubMed]

C. Koos, J. Leuthold, W. Freude, M. Kohl, L. Dalton, W. Bogaerts, A. L. Giesecke, M. Lauermann, A. Melikyan, S. Koeber, S. Wolf, C. Weimann, S. Muehlbrandt, K. Koehnle, J. Pfeifle, W. Hartmann, Y. Kutuvantavida, S. Ummethala, R. Palmer, D. Korn, L. Alloatti, P. C. Schindler, D. L. Elder, T. Wahlbrink, and J. Bolten, “Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration,” J. Lightwave Technol. 34(2), 256–268 (2016).
[Crossref]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573–1586 (2016).
[Crossref] [PubMed]

C. Weimann, M. Fratz, H. Wölfelschneider, W. Freude, H. Höfler, and C. Koos, “Synthetic-wavelength interferometry improved with frequency calibration and unambiguity range extension,” Appl. Opt. 54(20), 6334–6343 (2015).
[Crossref] [PubMed]

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref] [PubMed]

Wolf, S.

Wölfelschneider, H.

Xuan, Z.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Yu, H.

Yurtsever, G.

Zappe, H. P.

D. Hofstetter, H. P. Zappe, and R. Dandliker, “Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers,” J. Lightwave Technol. 15(4), 663–670 (1997).
[Crossref]

Zatti, S.

Zhang, Y.

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

Zhou, G.

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Appl. Opt. (6)

Build. Environ. (1)

A. K. Melikov, U. Krüger, G. Zhou, T. L. Madsen, and G. Langkilde, “Air temperature fluctuations in rooms,” Build. Environ. 32(2), 101–114 (1997).
[Crossref]

Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator,” Electron. Lett. 43(19), 1039–1040 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal Phase Noise Measurements in Optical Fiber Interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

IEEE Solid-State Circ. Mag. (1)

M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon Photonics: The Next Fabless Semiconductor Industry,” IEEE Solid-State Circ. Mag. 5(1), 48–58 (2013).
[Crossref]

J. Lightwave Technol. (4)

J. Nonlinear Opt. Phys. Mater. (1)

A. Rubiyanto, H. Herrmann, R. Ricken, F. Tian, and W. Sohler, “Integrated optical heterodyne interferometer in lithium niobate,” J. Nonlinear Opt. Phys. Mater. 10(2), 163–168 (2001).
[Crossref]

J. Phys. Conf. Ser. (1)

C. Weimann, F. Hoeller, Y. Schleitzer, C. A. Diez, B. Spruck, W. Freude, Y. Boeck, and C. Koos, “Measurement of Length and Position with Frequency Combs,” J. Phys. Conf. Ser. 605, 012030 (2015).
[Crossref]

Light Sci. Appl. (1)

V. Brasch, E. Lucas, J. D. Jost, M. Geiselmann, and T. J. Kippenberg, “Self-referenced photonic chip soliton Kerr frequency comb,” Light Sci. Appl. 6(1), e16202 (2016).
[Crossref]

Measurement (1)

G. Ulbers, “A sensor for dimensional metrology with an interferometer using integrated optics technology,” Measurement 9(1), 13–16 (1991).
[Crossref]

Nat. Photonics (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Nature (1)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref] [PubMed]

Opt. Acta: International Journal of Optics (1)

U. Vry, “Absolute Statistical Error in Two-wavelength Rough-surface Interferometry (ROSI),” Opt. Acta: International Journal of Optics 33(10), 1221–1225 (1986).
[Crossref]

Opt. Express (8)

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
[Crossref] [PubMed]

M. Lauermann, C. Weimann, A. Knopf, W. Heni, R. Palmer, S. Koeber, D. L. Elder, W. Bogaerts, J. Leuthold, L. R. Dalton, C. Rembe, W. Freude, and C. Koos, “Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology,” Opt. Express 24(11), 11694–11707 (2016).
[Crossref] [PubMed]

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express 23(4), 5117–5125 (2015).
[Crossref] [PubMed]

S. Schneider, M. Lauermann, P.-I. Dietrich, C. Weimann, W. Freude, and C. Koos, “Optical coherence tomography system mass-producible on a silicon photonic chip,” Opt. Express 24(2), 1573–1586 (2016).
[Crossref] [PubMed]

Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express 21(11), 13342–13350 (2013).
[Crossref] [PubMed]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Precis. Eng. (1)

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150 m using temporal coherence of optical frequency comb,” Precis. Eng. 37(3), 635–639 (2013).
[Crossref]

Remote Sens. Rev. (1)

J. Ronnau, S. Haimov, and S. P. Gogineni, “The effect of signal‐to‐noise ratio on phase measurements with polarimetric radars,” Remote Sens. Rev. 9(1-2), 27–37 (1994).
[Crossref]

Sens. Actuators A Phys. (1)

T. Oka, H. Nakajima, M. Tsugai, U. Hollenbach, U. Wallrabe, and J. Mohr, “Development of a micro-optical distance sensor,” Sens. Actuators A Phys. 102(3), 261–267 (2003).
[Crossref]

Other (10)

D. Ganin, P. Trocha, M. Pfeiffer, M. Karpov, A. Kordts, J. Krockenberger, P. Marin-Palomo, S. Wolf, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast Dual-Comb Distance Metrology Using Dissipative Kerr Solitons,” in Conference on Lasers and Electro-Optics 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper STh4L.6.
[Crossref]

C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in Conference on Lasers and Electro-Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STh4O.3.
[Crossref]

V. Ataie, P. P. Kuo, A. Wiberg, Z. Tong, C. Huynh, N. Alic, and S. Radic, “Ultrafast Absolute Ranging by Coherent Parametric Comb,” in Optical Fiber Communication Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3D.2.
[Crossref]

C. Weimann, F. Hoeller, and C. Koos, “High-precision laser ranging for industrial metrology with dual-color electro-optic frequency combs,” in 116th Annual DGaO Conference 2015, talk A4.

Corning, SMF-28e + Optical Fiber Product Information, 2014.

P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” https://arXiv:1707.05969 (2017).

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, and Y. Zhang, “A 25 Gb/s silicon photonics platform,” https://arXiv:1203.0767 (2012).

C. Weimann, D. Meier, S. Wolf, Y. Schleitzer, M. Totzeck, A. Heinrich, F. Hoeller, J. Leuthold, W. Freude, and C. Koos, “Fast high-precision distance measurements on scattering technical surfaces using frequency combs,” in Conference on Lasers and Electro-Optics 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2I.3.
[Crossref]

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd ed. (McGraw-Hill, 2003).

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-Chip Integration of Lasers and Silicon Photonics by Photonic Wire Bonding,” in Conference on Lasers and Electro-Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STu2F.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup and detection principle. (a) Light from a cw laser is amplified in an erbium-doped fiber amplifier (EDFA) to a power of 18 dBm, split, and directed to two MZM. Two slightly detuned frequency combs (FC 1 and FC 2, see insets I and II for optical spectra) with a line spacing of f mod,LO =40.000GHz and f mod,sig =39.957GHz are generated by sinusoidal phase modulation. FC 1 is additionally shifted by Δ f 0 =55MHz in an acousto-optical modulator (AOM). Light is coupled to and from the silicon PIC via a fiber array and grating couplers. FC 1 is coupled to the PIC through port 3, and is further distributed by a tunable power splitter (TPS) to the measurement and the reference detector, where it acts as local oscillator (LO) for multi-heterodyne detection of FC 2. FC 2 is coupled to the PIC though port 1 and split by a multimode interference coupler (MMI). One part of FC 2 is guided directly to the reference detector, where it is superimposed with FC 1. The other part exits the PIC through port 3, is guided via single-mode fibers to a collimator and propagates over the free-space measurement path of length z. The reflected light is coupled back into the fiber, sent to the PIC through port 4, and finally superimposed with FC 1 on the measurement detectors. (b) Schematic optical power spectra of FC 1 (dashed blue lines) and FC 2 (continuous red lines). The line spacings of FC 1 and FC 2 are slightly detuned by Δfmod = |fmod,LO −□fmod,sig|, and the center frequencies are offset by Δf0. (c) Schematic one-sided power spectrum of the photocurrent (negative frequencies grayed out). Quadratic detection of FC 1 and FC 2 by a photodiode leads to a multitude of sinusoidal IF signals with frequencies | Δ f 0 +mΔ f mod | in the photocurrent (heterodyne detection). Negative frequencies of the corresponding two-sided spectrum are drawn in gray and mirrored to positive frequencies of the one-sided spectrum. The phases of the IF signals are directly linked to the phase shifts accumulated by the lines of the FC during propagation.

Fig. 2
Fig. 2

Microscope image of the silicon PIC. The main elements used by the distance sensor system are highlighted by colored frames and depicted magnified on the right-hand side. Connecting waveguides are routed between additional optical circuits for other purposes, which are co-integrated on the same chip. The occupied on-chip area of the distance sensor system amounts to 0.25 mm2.

Fig. 3
Fig. 3

Data processing for dual-comb synthetic-wavelength interferometry. (a) Measured one-sided spectrum of the photocurrents of measurement and reference detectors acquired at a resolution bandwidth (RBW) of 72 kHz. The IF lines are indexed by m as in Fig. 1. Lines with index m < −1, that, in the present configuration, would appear at negative frequencies in the two-sided electrical power spectrum, are mirrored to the positive frequency range in the one-sided spectrum as explained in Fig. 1 (c). (b) Differences of the IF phases δφm as measured between the reference and the measurement detectors as a function of the line index m. Phase values before unwrapping (sawtooth-like shapes) are depicted in light colors, illustrating the 2π-periodicity. The unwrapped phase values follow a linear relationship. The slope of the fitted straight line is proportional to the optical path length difference between reference and measurement paths, see Eq. (2).

Fig. 4
Fig. 4

Measurement results. (a) Unwrapped measured distances z (blue) and errors z-zset (black) vs. set distance zset. Error bars indicated a range of twice the standard deviation obtained from 10 subsequent measurements at the same position. Acquisition time per measurement is 14 µs. The accuracy of the positioning stage used for setting the distance zset is specified to be better than 50 nm. The small deviations of the mean distance error from 0 µm are attributed to thermal path length fluctuations in the optical fibers and to crosstalk caused by reflections from on-chip devices such as MMI or grating couplers. (b) Optical power of FC 1 (LO) at measurement and reference detector (PLO,meas and PLO,ref) along with corresponding standard deviation for the distance measurement, both plotted vs. the current of the p-i-n phase shifter in the TPS. The power splitting ratio resulting in minimum standard deviation is indicated by γmin,dB.

Fig. 6
Fig. 6

Schematic of power distribution on measurement and reference detectors. P sig,meas is subject to an additional measurement path loss of η dB =10lg( η )=23dB when compared to P sig,ref due to coupling losses, see Fig. 1 and the discussion in Section 3. The power of the LO comb FC 1 is distributed between both detectors by the TPS with a tunable power splitting ratio of γ.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

δ φ m (z)=Δ φ m (z)Δ φ m ( z 0 )=2(z z 0 )m ω mod,sig /c +2(z z 0 ) ω 0,sig /c .
dδ φ m (z) dm =2( z z 0 ) ω mod,sig c .
ΔD=( n α L + dn dT )LΔT
( ΔD/ ΔT )/L =10.7 μm/ ( Km )
ω l,sig = ω 0,sig +l ω mod,sig .
ω m,LO = ω 0,LO +m ω mod,LO =( ω 0,sig +Δ ω 0 )+m( ω mod,sig +Δ ω mod )
E _ sig,meas ( t )= l E ^ l,sig,meas exp( j ω l,sig t )exp( j ( 2z+ D sig,meas ) ω l,sig /c ) E _ LO,meas ( t )= m E ^ m,LO,meas exp( j ω m,LO t )exp( j D LO,meas ω m,LO /c ) .
i AC,meas ( t )= Z 0 1 S{ E _ sig,meas ( t ) E _ LO,meas ( t ) } = Z 0 1 S{ l m E ^ l,sig,meas E ^ m,LO,meas exp( j( Δ ω 0 +( ml ) ω mod,sig +mΔ ω mod )t ) exp( j ( ( 2z+ D sig,meas ) ω l,sig D LO,meas ω m,LO )/c ) }.
i AC,ref ( t )= Z 0 1 S{ E _ sig,ref ( t ) E _ LO,ref ( t ) } = Z 0 1 S{ l m E ^ l,sig,ref E ^ m,LO,ref exp( j( Δ ω 0 +( ml ) ω mod,sig +mΔ ω mod )t ) exp( j ( D sig,ref ω l,sig D LO,ref ω m,LO )/c ) }.
f m,l =| Δ f 0 +( ml ) f mod,sig +mΔ f mod |.
φ m,meas ( 2z+ D sig,meas , D LO,meas )=( ( 2z+ D sig,meas ) ω m,sig D LO,meas ω m,LO )/c = ( ( 2z+ D sig,meas ) D LO,meas )( ω 0,sig +m ω mod,sig )/c D LO,meas ( Δ ω 0 +mΔ ω mod )/c =2π( ( 2z+ D sig,meas ) D LO,meas ) Λ m 1 +2π( ( 2z+ D sig,meas ) D LO,meas ) λ 0,sig 1 D LO,meas ( Δ ω 0 +mΔ ω mod )/c .
φ m,ref ( D sig,ref , D LO,ref )=( D sig,ref ω m,sig D LO,ref ω m,LO )/c
Δ φ m ( z )= φ m,meas ( 2z+ D sig,meas , D LO,meas ) φ m,ref ( D sig,ref , D LO,ref ) =( 2z+ D sig,meas D LO,meas ( D sig,ref D LO,ref ) ) m ω mod,sig /c +( 2z+ D sig,meas D LO,meas ( D sig,ref D LO,ref ) ) ω 0,sig /c ( D LO,meas D LO,ref ) Δ ω 0 /c ( D LO,meas D LO,ref ) mΔ ω mod /c .
δ φ m (z)=Δ φ m (z)Δ φ m ( z 0 )=2(z z 0 )m ω mod,sig /c +2(z z 0 ) ω 0,sig /c .
SNR m = 1 2 S 2 2 P m,sig 2 P m,LO σ I,noise 2
σ φ,m 2 = 1 2× SNR m .
σ Δφ 2 = σ φ,meas 2 + σ φ,ref 2 .
σ z 2 = σ Δφ 2 N 3 ( ω mod,sig /c ) 2 ( N 2 1 ) .
σ Δφ 2 = σ I,noise 2 4 S 2 ( 1 P sig,meas P LO,meas + 1 P sig,ref P LO,ref )
σ Δφ 2 = σ I,noise 2 4 S 2 P LO P sig,ref ( 1 η( 1γ ) + 1 γ ).
γ min = 1 1+ η 1/2

Metrics