Abstract

We present a compact and low loss 90° optical hybrid on a silicon-on-insulator (SOI) platform for coherent receiving systems. Our 90° optical hybrid uses a novel topology, comprising one Y-junction and three 2x2 multimode interference (MMI) couplers. The geometry of the 90° optical hybrid is fully optimized using particle swarm optimization (PSO). The fabricated 90° optical hybrid has a compact footprint of 21.6 μm x 27.9 μm, with an insertion loss less than 0.5 dB, a common mode rejection ratio (CMRR) larger than 30 dB, and phase error smaller than 3° in the C-band across 22 reticles on one wafer. The measured phase error (< 3°) in a packaged coherent receiver further confirms the excellent performance of the 90° optical hybrid.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator

Wei Yang, Mei Yin, Yanping Li, Xingjun Wang, and Ziyu Wang
Opt. Express 21(23) 28423-28431 (2013)

A compact and low loss Y-junction for submicron silicon waveguide

Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 21(1) 1310-1316 (2013)

Design and optimization of a novel silicon-on-insulator wavelength diplexer

Yangjin Ma, Peter Magill, Tom Baehr-Jones, and Michael Hochberg
Opt. Express 22(18) 21521-21528 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
  2. M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technologies (Springer, 2010).
  3. P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
  4. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightwave Technol. 34(1), 157–179 (2016).
  5. C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
  6. H. Rohde, E. Gottwald, A. Teixeira, J. D. Reis, A. Shahpari, K. Pulverer, and J. S. Wey, “Coherent ultra dense WDM technology for next generation optical metro and access networks,” J. Lightwave Technol. 32(10), 2041–2052 (2014).
  7. E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
  8. K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011).
    [PubMed]
  9. Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.
  10. F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.
  11. S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).
  12. K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).
  13. P. Runge, S. Schubert, A. Seeger, K. Janiak, J. Stephan, D. Trommer, P. Domburg, and M. L. Nielsen, “Monolithic InP receiver chip with a 90° hybrid and 56 GHz balanced photodiodes,” Opt. Express 20(26), B250–B255 (2012).
    [PubMed]
  14. S.-H. Jeong and K. Morito, “Novel optical 90° hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI Coupler,” J. Lightwave Technol. 28(9), 1323–1331 (2010).
  15. W. Yang, M. Yin, Y. Li, X. Wang, and Z. Wang, “Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator,” Opt. Express 21(23), 28423–28431 (2013).
    [PubMed]
  16. H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).
  17. Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express 19(26), B1–B11 (2011).
    [PubMed]
  18. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
  19. M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).
  20. S. Jeong and K. Morito, “Simple analytical calculation and experimental demonstration of optical 90° hybrids based on tapered 2×4 and 2×2 multimode interference couplers,” J. Opt. Soc. Am. B 28(1), 159–164 (2011).
  21. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett. 36(2), 178–180 (2011).
    [PubMed]
  22. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
    [PubMed]
  23. L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
  24. M. R. Paiam and R. I. Macdonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36(21), 5097–5108 (1997).
    [PubMed]
  25. R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).
  26. Y. Yang, Y. Ma, H. Guan, Y. Liu, S. Danziger, S. Ocheltree, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Phase coherence length in silicon photonic platform,” Opt. Express 23(13), 16890–16902 (2015).
    [PubMed]
  27. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (OSA, 2014), paper Th2A37.
  28. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [PubMed]
  29. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [PubMed]
  30. H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
    [PubMed]
  31. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [PubMed]
  32. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).
  33. T. Fujisawa, S. Makino, T. Sato, and K. Saitoh, “Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits,” Opt. Express 25(8), 9150–9159 (2017).
    [PubMed]
  34. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.
  35. “Implementation Agreement for CFP2-Analogue Coherent Optics Module,” OIF.2014.75.13, Working Group: PLL, October 2013.

2017 (1)

2016 (2)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightwave Technol. 34(1), 157–179 (2016).

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

2015 (2)

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

Y. Yang, Y. Ma, H. Guan, Y. Liu, S. Danziger, S. Ocheltree, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Phase coherence length in silicon photonic platform,” Opt. Express 23(13), 16890–16902 (2015).
[PubMed]

2014 (4)

H. Rohde, E. Gottwald, A. Teixeira, J. D. Reis, A. Shahpari, K. Pulverer, and J. S. Wey, “Coherent ultra dense WDM technology for next generation optical metro and access networks,” J. Lightwave Technol. 32(10), 2041–2052 (2014).

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[PubMed]

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

2013 (3)

2012 (1)

2011 (6)

2010 (3)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

S.-H. Jeong and K. Morito, “Novel optical 90° hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI Coupler,” J. Lightwave Technol. 28(9), 1323–1331 (2010).

2006 (1)

2004 (1)

1997 (1)

1995 (1)

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).

1994 (2)

R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).

M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
[PubMed]

1989 (1)

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

Adar, R.

R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).

Agrell, E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

Bachmann, M.

Baehr-Jones, T.

Baney, D. M.

Bergman, K.

Y. Yang, Y. Ma, H. Guan, Y. Liu, S. Danziger, S. Ocheltree, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Phase coherence length in silicon photonic platform,” Opt. Express 23(13), 16890–16902 (2015).
[PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Besse, P. A.

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).

Bowers, J. E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Buhl, L.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

Chen, Y.-K.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

Chraplyvy, A. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Contestabile, G.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

Danziger, S.

Dietrich, E.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

Ding, R.

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Domburg, P.

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

Eggleton, B. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Fang, Q.

Faralli, S.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

Fisher, J. K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Fujisawa, T.

Fukutoku, M.

Galland, C.

Gambini, F.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

Garcia, J. M.

Gill, V.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Gisin, N.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Goh, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Gottwald, E.

Gould, M.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Guan, H.

Halir, R.

Hashimoto, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Hattori, K.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Heidrich, H.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

Henry, C. H.

R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).

Hochberg, M.

Hoffman, D.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

Inoue, N.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Ishii, Y.

Janiak, K.

Jeong, S.

Jeong, S.-H.

Kamalov, V.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Kamei, S.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Karlsson, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Kataoka, T.

Katsuyama, T.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Kawai, T.

Kikuchi, K.

Kikuchi, T.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Kistler, R. C.

R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).

Klamkin, J.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

Koley, B.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Komukai, T.

Krummrich, P. M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Kschischang, F. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Lam, C.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Langenhorst, R.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

Li, Q.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Li, Y.

Lim, A. E.-J.

Liu, H.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

Liu, Y.

Y. Yang, Y. Ma, H. Guan, Y. Liu, S. Danziger, S. Ocheltree, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Phase coherence length in silicon photonic platform,” Opt. Express 23(13), 16890–16902 (2015).
[PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Lively, E.

Lo, G.-Q.

Lord, A.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Ma, Y.

Macdonald, R. I.

Makino, S.

Masuyama, R.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

McNab, S.

Melchior, H.

Meloni, G.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

Milbrodt, M. A.

R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).

Mizuno, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Morito, K.

Nasu, Y.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Nguyen, K. N.

Nielsen, M. L.

Novack, A.

Ocheltree, S.

Ortega-Moñux, A.

Padmaraju, K.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Paiam, M. R.

Pearce, M. B.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Pennings, C. M.

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).

Petermann, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

Potì, L.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

Poulsen, H. N.

Prat, J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Pulverer, K.

Reis, J. D.

Roberts, K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Rochardson, D. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Roelkens, G.

Rohde, H.

Runge, P.

Saitoh, K.

Sakamaki, Y.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express 19(26), B1–B11 (2011).
[PubMed]

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Sato, T.

Savory, S. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Schubert, S.

Secondini, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Seeger, A.

Seimetz, M.

Selvaraja, S. K.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).

Shahpari, A.

Shi, R.

Shoji, H.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Skahan, P. J.

Soldano, L. B.

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).

Srinivasan, S.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Stephan, J.

Takahashi, H.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Takechi, M.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Tao, J.

Tateiwa, Y.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Teixeira, A.

Tian, H.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

Tillack, B.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).

Tomkos, I.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Trommer, D.

Uesaka, K.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Vlasov, Y.

Voigt, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

Wang, X.

Wang, Z.

Wangüemert-Pérez, J. G.

Watanabe, T.

Weinert, C. M.

Wenke, G.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

Wey, J. S.

Winzer, G.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

Winzer, P.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

Yagi, H.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Yamazaki, H.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

Yang, S.

Yang, W.

Yang, Y.

Y. Yang, Y. Ma, H. Guan, Y. Liu, S. Danziger, S. Ocheltree, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Phase coherence length in silicon photonic platform,” Opt. Express 23(13), 16890–16902 (2015).
[PubMed]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

Yin, M.

Yoneda, Y.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

Zhang, Y.

Zhao, X.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Zimmermann, L.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

Appl. Opt. (2)

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).

IEEE Commun. Mag. (1)

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

IEEE J. Sel. Top. Quantum Electron. (2)

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based pin-Photodiode Array Integrated With 90° Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantum Electron. 20(6), 374–380 (2014).

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, and Y.-K. Chen, “Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).

IEEE Photonics J. (2)

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A compact silicon coherent receiver without waveguide crossing,” IEEE Photonics J. 7(4), 1–6 (2015).

IEEE Photonics Technol. Lett. (1)

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photonics Technol. Lett. 23(23), 1769–1771 (2011).

J. Lightwave Technol. (7)

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).

R. Adar, C. H. Henry, M. A. Milbrodt, and R. C. Kistler, “Phase coherence of optical waveguides,” J. Lightwave Technol. 12(4), 603–606 (1994).

H. Rohde, E. Gottwald, A. Teixeira, J. D. Reis, A. Shahpari, K. Pulverer, and J. S. Wey, “Coherent ultra dense WDM technology for next generation optical metro and access networks,” J. Lightwave Technol. 32(10), 2041–2052 (2014).

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightwave Technol. 34(1), 157–179 (2016).

M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).

S.-H. Jeong and K. Morito, “Novel optical 90° hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI Coupler,” J. Lightwave Technol. 28(9), 1323–1331 (2010).

J. Opt. (1)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Rochardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fisher, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. B. Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).

J. Opt. Soc. Am. B (1)

Opt. Express (9)

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express 19(26), B1–B11 (2011).
[PubMed]

K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011).
[PubMed]

P. Runge, S. Schubert, A. Seeger, K. Janiak, J. Stephan, D. Trommer, P. Domburg, and M. L. Nielsen, “Monolithic InP receiver chip with a 90° hybrid and 56 GHz balanced photodiodes,” Opt. Express 20(26), B250–B255 (2012).
[PubMed]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[PubMed]

W. Yang, M. Yin, Y. Li, X. Wang, and Z. Wang, “Ultra-compact optical 90° hybrid based on a wedge-shaped 2 × 4 MMI coupler and a 2 × 2 MMI coupler in silicon-on-insulator,” Opt. Express 21(23), 28423–28431 (2013).
[PubMed]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[PubMed]

T. Fujisawa, S. Makino, T. Sato, and K. Saitoh, “Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits,” Opt. Express 25(8), 9150–9159 (2017).
[PubMed]

Y. Yang, Y. Ma, H. Guan, Y. Liu, S. Danziger, S. Ocheltree, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Phase coherence length in silicon photonic platform,” Opt. Express 23(13), 16890–16902 (2015).
[PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[PubMed]

Opt. Lett. (2)

Other (6)

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2013), pp. 7–8.

“Implementation Agreement for CFP2-Analogue Coherent Optics Module,” OIF.2014.75.13, Working Group: PLL, October 2013.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference (OSA, 2014), paper Th2A37.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip integrated dual polarization optical hybrid using silica-based planar lightwave circuit technology,” in European Conference and Exhibition on Optical Communication (IEEE, 2009), pp. 1–2.

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-compact 56-Gb/s QPSK and 80-Gb/s 16-QAM silicon coherent receiver free of waveguide crossings,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 149–150.

M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technologies (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the proposed 90° optical hybrid.

Fig. 2
Fig. 2

(a) Schematic of the 2x2 MMI coupler (top view). The 2x2 MMI geometry is defined by cubic interpolation of W1 to W3 . (b) Simulated power distribution at 1550 nm wavelength. (c) Simulated 2x2 MMI coupler insertion loss. (d) Simulated 2x2 MMI coupler phase difference between the through port and the cross port.

Fig. 3
Fig. 3

Simulated E-field distribution at 1550 nm wavelength (a) when input from the signal port, (b) when input from the LO port. (c) Simulated total insertion loss. (d) Simulated CMRR.

Fig. 4
Fig. 4

(a) Optical image of the fabricated 90° optical hybrid, and (b) Image of the automatic wafer-level test setup.

Fig. 5
Fig. 5

Measured (a) total insertion loss, (b) imbalance, (c) CMRR, and (d) phase error of the 90° optical hybrid (dark curve is the averaged value over 22 dies, and light-colored region indicates the 1-δ deviation).

Fig. 6
Fig. 6

Measured (a) total insertion loss, (b) imbalance, (c) CMRR, and (d) phase error of the 90° optical hybrid in a typical die.

Fig. 7
Fig. 7

(a) Schematic of the coherent receiver module. (b) Measured output voltages after TIAs as a function of time. (c) Measured phase difference between the I and Q channels as a function of beating frequency at 1550 nm. (d) Measure phase error in the entire C-band.

Fig. 8
Fig. 8

Simulated required OSNR in a typical 16 QAM coherent receiver under different CMRR and insertion loss of 90° optical hybrid.

Tables (2)

Tables Icon

Table 1 2x2 MMI geometric parameters in μm

Tables Icon

Table 2 Performance comparison of 90° optical hybrid

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

[ E 1 E 2 E 3 E 4 ]=[ T 3 ][ T 2 ][ T 1 ][ E S E LO 0 0 ]
[ T 1 ]= κ [ 1 0 0 0 0 1 0 0 0 1 0 0 e jθ 0 0 0 ]
[ T 2 ]=[ e j φ 1 0 0 0 0 e j φ 2 0 0 0 0 e j φ 3 0 0 0 0 e j φ 4 ]
[ T 3 ]= κ [ 1 e jθ 0 0 e jθ 1 0 0 0 0 1 e jθ 0 0 e jθ 1 ]
[ E 1 E 2 E 3 E 4 ]=κ[ e j φ 1 E S + e j(θ+ φ 2 ) E LO e j(θ+ φ 1 ) E S + e j φ 2 E LO e j(2θ+ φ 4 ) E S + e j φ 3 E LO e j(θ+ φ 4 ) E S + e j(θ+ φ 3 ) E LO ]
φ 1 = φ 4 and φ 2 = φ 3
[ E 1 E 2 E 3 E 4 ]= 1 2 [ E S +j E LO E S j E LO E S E LO E S + E LO ]
phase_error= π 2 ( φ 2 φ 1 )( φ 4 φ 3 )θ
Loss=10log( P Input ) 10log( P i ) i=Ip,In,Qp,Qn
CMR R I =20log(| P Ip P In P Ip + P In |) CMR R Q =20log(| P Qp P Qn P Qp + P Qn |)
Imbalanc e I =10log( P Ip P In ) Imbalanc e Q =10log( P Qp P Qn )
FOM= (0.5 y 1 (λ) ) 2 + (0.5 y 2 (λ) ) 2 + ( y 1 (λ) y 2 (λ) ) 2