Abstract

To enable high-speed long-distance underwater optical wireless communication (UOWC) supplementing traditional underwater wireless communication, a low-power 520 nm green laser diode (LD) based UOWC system was proposed and experimentally demonstrated to implement maximal communication capacity of up to 2.70 Gbps data rate over a 34.5 m underwater transmission distance by using non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. Moreover, maximum data rates of up to 4.60 Gbps, 4.20 Gbps, 3.93 Gbps, 3.88 Gbps, and 3.48 Gbps at underwater distances of 2.3 m, 6.9 m, 11.5 m, 16.1 m and 20.7 m were achieved, respectively. The light attenuation coefficient of ~0.44 dB/m was obtained and the beam divergence angle is 0.35°, so the aallowable underwater transmission distance can be estimated to be ~90.7 m at a data rate of 0.15 Gbps with a corresponding received light-output power of −33.01 dBm and a bit-error rate (BER) of 2.0 ×10−6. In addition, when the data rate is up to 1 Gbps, the UOWC distance is predicted to be ~62.7 m for our proposed UOWC system. The achievements we make are suitable for applications requiring high-speed long-distance real-time UOWC.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
20-meter underwater wireless optical communication link with 1.5 Gbps data rate

Chao Shen, Yujian Guo, Hassan M. Oubei, Tien Khee Ng, Guangyu Liu, Ki-Hong Park, Kang-Ting Ho, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 24(22) 25502-25509 (2016)

2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

Hassan Makine Oubei, Changping Li, Ki-Hong Park, Tien Khee Ng, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 23(16) 20743-20748 (2015)

Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting

Xiaoyan Liu, Suyu Yi, Xiaolin Zhou, Shuailong Zhang, Zhilai Fang, Zhi-Jun Qiu, Laigui Hu, Chunxiao Cong, Lirong Zheng, Ran Liu, and Pengfei Tian
Opt. Express 26(15) 19259-19274 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
  2. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
  3. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
    [PubMed]
  4. C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2016).
  5. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [PubMed]
  6. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [PubMed]
  7. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
    [PubMed]
  8. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
    [PubMed]
  9. M. Doniec and D. Rus, “Bidirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (IEEE, 2010), pp. 390–394.
  10. M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.
  11. D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
    [PubMed]
  12. J. Xu, M. Kong, A. Lin, Y. Song, J. Han, Z. Xu, B. Wu, S. Gao, and N. Deng, “Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication,” Opt. Lett. 42(9), 1664–1667 (2017).
    [PubMed]
  13. H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).
  14. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
    [PubMed]
  15. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5(2), A35–A43 (2017).
  16. M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
    [PubMed]
  17. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [PubMed]
  18. W. Lee and C. S. Curry, “A performance analysis of OFDM systems in excessively dispersive multipath channels,” J. Commun. Netw. 8(3), 323–329 (2006).
  19. J. Zhang, H. Gharavi, and B. Hu, “Impact of cooperative space–time/frequency diversity in OFDM-based wireless sensor systems over mobile multipath channels,” IET Wirel. Sens. Syst. 6(4), 138–143 (2016).
  20. J. Davies, “Subsea wireless communication: Technology comparison and review,” Juice-DSP, Dorset, U.K., Tech. Rep., 2014, http://www.oceanologyinternational.com/__novadocuments/49643?v= 635314268958030000.

2017 (7)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[PubMed]

J. Xu, M. Kong, A. Lin, Y. Song, J. Han, Z. Xu, B. Wu, S. Gao, and N. Deng, “Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication,” Opt. Lett. 42(9), 1664–1667 (2017).
[PubMed]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5(2), A35–A43 (2017).

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
[PubMed]

2016 (6)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).

J. Zhang, H. Gharavi, and B. Hu, “Impact of cooperative space–time/frequency diversity in OFDM-based wireless sensor systems over mobile multipath channels,” IET Wirel. Sens. Syst. 6(4), 138–143 (2016).

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[PubMed]

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41(24), 5752–5755 (2016).
[PubMed]

C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2016).

2015 (3)

2006 (1)

W. Lee and C. S. Curry, “A performance analysis of OFDM systems in excessively dispersive multipath channels,” J. Commun. Netw. 8(3), 323–329 (2006).

Ali, T.

Alouini, M. S.

Bamiedakis, N.

Bowers, J. E.

Cantore, M.

Chen, B.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Chen, Y.

Cheng, J.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

Chi, Y. C.

Chitre, M.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

Chu, C.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Corbett, B.

Curry, C. S.

W. Lee and C. S. Curry, “A performance analysis of OFDM systems in excessively dispersive multipath channels,” J. Commun. Netw. 8(3), 323–329 (2006).

Dawson, M. D.

DenBaars, S. P.

Deng, N.

Detweiler, C.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

Dinh, D. V.

Dong, Y.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

Doniec, M.

M. Doniec and D. Rus, “Bidirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (IEEE, 2010), pp. 390–394.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

Duran, J. R.

Farrell, R. M.

Ferreira, R. X.

Fu, S.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

Gao, S.

Gharavi, H.

J. Zhang, H. Gharavi, and B. Hu, “Impact of cooperative space–time/frequency diversity in OFDM-based wireless sensor systems over mobile multipath channels,” IET Wirel. Sens. Syst. 6(4), 138–143 (2016).

Gu, E.

Guo, C.

Guo, Y.

Haas, H.

Han, J.

Hanawa, M.

He, J. H.

He, X.

Ho, K. T.

Hoffmann-Kuhnt, M.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

Hu, B.

J. Zhang, H. Gharavi, and B. Hu, “Impact of cooperative space–time/frequency diversity in OFDM-based wireless sensor systems over mobile multipath channels,” IET Wirel. Sens. Syst. 6(4), 138–143 (2016).

Hu, L.

Huang, Y.

Islim, M. S.

Janjua, B.

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).

Kaushal, H.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).

Kelly, A. E.

Kong, M.

Kuo, H. C.

Lee, C.

Lee, W.

W. Lee and C. S. Curry, “A performance analysis of OFDM systems in excessively dispersive multipath channels,” J. Commun. Netw. 8(3), 323–329 (2006).

Li, C.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Lin, A.

Lin, G. R.

Lin, H.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Liu, G.

Liu, R.

Liu, X.

Lu, H.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Lv, W.

Margalith, T.

Mizukoshi, I.

Nakamura, K.

Nakamura, S.

Ng, T. K.

Oh, S. H.

Ooi, B. S.

Oubei, H. M.

Parbrook, P. J.

Park, K. H.

Penty, R. V.

Qiu, Y.

Qu, F.

Quan, Z.

Roycroft, B.

Rus, D.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

M. Doniec and D. Rus, “Bidirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (IEEE, 2010), pp. 390–394.

Sarwar, R.

Shen, C.

Song, Y.

Speck, J. S.

Sun, B.

Tian, P.

Tsai, C. T.

Tsai, W.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Vasilescu, I.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

Videv, S.

Viola, S.

Wang, C.

C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2016).

Wang, H. Y.

Wang, J.

Watson, S.

White, I. H.

Wu, B.

Wu, C.

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[PubMed]

Xie, E.

Xu, J.

Xu, Z.

Yi, S.

Yu, C.

Yu, H.

C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2016).

Zeng, Z.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

Zhang, C.

Zhang, H.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

Zhang, J.

J. Zhang, H. Gharavi, and B. Hu, “Impact of cooperative space–time/frequency diversity in OFDM-based wireless sensor systems over mobile multipath channels,” IET Wirel. Sens. Syst. 6(4), 138–143 (2016).

Zhang, S.

Zheng, L.

Zhou, X.

Zhu, Y.

C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2016).

IEEE Access (1)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).

IEEE Comm. Surv. and Tutor. (1)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).

IEEE Photonics J. (2)

C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photonics J. 8(5), 7906311 (2016).

H. Lu, C. Li, H. Lin, W. Tsai, C. Chu, B. Chen, and C. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 7906107 (2016).

IET Wirel. Sens. Syst. (1)

J. Zhang, H. Gharavi, and B. Hu, “Impact of cooperative space–time/frequency diversity in OFDM-based wireless sensor systems over mobile multipath channels,” IET Wirel. Sens. Syst. 6(4), 138–143 (2016).

J. Commun. Netw. (1)

W. Lee and C. S. Curry, “A performance analysis of OFDM systems in excessively dispersive multipath channels,” J. Commun. Netw. 8(3), 323–329 (2006).

Opt. Express (7)

M. Kong, W. Lv, T. Ali, R. Sarwar, C. Yu, Y. Qiu, F. Qu, Z. Xu, J. Han, and J. Xu, “10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication,” Opt. Express 25(17), 20829–20834 (2017).
[PubMed]

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
[PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[PubMed]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[PubMed]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[PubMed]

Opt. Lett. (2)

Photon. Res. (1)

Sci. Rep. (1)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[PubMed]

Other (3)

M. Doniec and D. Rus, “Bidirectional optical communication with AquaOptical II,” in Proceedings of IEEE International Conference on Communication Systems (IEEE, 2010), pp. 390–394.

M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “Aquaoptical: A lightweight device for high-rate long-range underwater point-to-point communication,” in Proceedings of IEEE OCEANS, Marine Technol. Future, Global Local Challenges (IEEE, 2009), pp. 1–6.

J. Davies, “Subsea wireless communication: Technology comparison and review,” Juice-DSP, Dorset, U.K., Tech. Rep., 2014, http://www.oceanologyinternational.com/__novadocuments/49643?v= 635314268958030000.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experiment setup of the proposed UOWC based on a 520 nm green LD, n represents the reflection times of the light beam. The frequency response, BERs and eye diagrams were measured, denoted in red, black and blue lines, respectively.
Fig. 2
Fig. 2 Images of the 520 nm green LD-based UOWC: (a) the APD receiver, (b) the communication channel based on the LD UOWC without water in the tank and (c) the packaged LD. Pictures of (d) the temperature controlled 520 nm green LD and (e) the light beam reflections through the water.
Fig. 3
Fig. 3 (a) The I-V and L-I characteristics of the 520 nm green LD. (b) Electroluminescence spectra of the green LD under different injection currents.
Fig. 4
Fig. 4 (a) Normalized frequency responses and (b) the extracted −3dB modulation bandwidth characteristics of the 520 nm green LD at various injection currents. The dashed line denotes the −3 dB modulation bandwidth.
Fig. 5
Fig. 5 BERs at (a) different injection currents and (b) various modulation signal amplitudes.
Fig. 6
Fig. 6 BER versus data rate at various underwater transmission distances.
Fig. 7
Fig. 7 Eye diagram versus data rate at different underwater transmission distances of (a) 2.3 m at a data rate of 4 Gbps, (b) 6.9 m at a data rate of 4 Gbps, (c) 11.5 m at a data rate of 3.60 Gbps, (d) 16.1 m at a data rate of 3.50 Gbps, (e) 20.7 m at a data rate of 3.30 Gbps and (f) 34.5 m at a data rate of 2.50 Gbps.
Fig. 8
Fig. 8 (a) Received light-output power versus injection current curves at a 34.5 m transmission distance. (b) BER versus received light-output power at various data rates.
Fig. 9
Fig. 9 Pictures of laser spot (a) at the transmitter and (b) at the receiver with an underwater transmission distance of 11.5 m. The horizontal light beam sizes are 5 mm and 12 mm respectively. (c) The schematic diagram of light beam divergence.

Tables (2)

Tables Icon

Table 1 Comparison of UOWC systems in the literature.

Tables Icon

Table 2 Performances of UOWC based on a 520 nm LD using NRZ-OOK modulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L uowc = L 0 + P i - P 0 -c
θ=2ψ=2arctan( D R - D T 2L )

Metrics