Abstract

The interaction of a surface plasmon polariton wave of the far-infrared regime propagating in a single-walled carbon nanotube with a drift current is theoretically investigated. It is shown that under the synchronism condition a surface plasmon polariton amplification mechanism is implemented due to the transfer of electromagnetic energy from a drift current wave into a terahertz surface wave propagating along the surface of a single-walled carbon nanotube. Numerical calculations show that for a typical carbon nanotube surface plasmon polariton amplification coefficient reaches huge values of the order of 106 сm−1, which makes it possible to create a carbon-nanotube-based spaser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz surface plasmon polaritons on freestanding multi-walled carbon nanotube aerogel sheets

T. D. Nguyen, S. Liu, M. D. Lima, S. Fang, R. H. Baughman, A. Nahata, and Z. V. Vardeny
Opt. Mater. Express 2(6) 782-788 (2012)

In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon

Padmnabh Rai, Nicolai Hartmann, Johann Berthelot, Gérard Colas-des-Francs, Achim Hartschuh, and Alexandre Bouhelier
Opt. Lett. 37(22) 4711-4713 (2012)

Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube

I. V. Bondarev
Opt. Express 23(4) 3971-3984 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [Crossref]
  2. M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
    [Crossref]
  3. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
    [Crossref] [PubMed]
  4. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  5. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped Dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
    [Crossref] [PubMed]
  6. D. A. Svintsov, A. V. Arsenin, and D. Yu. Fedyanin, “Full loss compensation in hybrid plasmonic waveguides under electrical pumping,” Opt. Express 23(15), 19358–19375 (2015).
    [Crossref] [PubMed]
  7. D. Yu. Fedyanin, “Toward an electrically pumped spaser,” Opt. Lett. 37(3), 404–406 (2012).
    [Crossref] [PubMed]
  8. D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
    [Crossref] [PubMed]
  9. R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
    [Crossref]
  10. Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
    [Crossref]
  11. A. Moradi, “Surface plasmon–polariton modes of metallic single-walled carbon nanotubes,” Photon. Nanostructures 11(1), 85–88 (2013).
    [Crossref]
  12. F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  13. C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Phys. Rev. Lett. 79(25), 5086–5089 (1997).
    [Crossref]
  14. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
    [Crossref]
  15. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
    [Crossref]
  16. Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
    [Crossref]
  17. L. Martín-Moreno, F. J. de Abajo, and F. J. García-Vidal, “Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube,” Phys. Rev. Lett. 115(17), 173601 (2015).
    [Crossref] [PubMed]
  18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  19. S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
    [Crossref] [PubMed]
  20. V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes,” Phys. Rev. Lett. 94(8), 086802 (2005).
    [Crossref] [PubMed]
  21. W. K. Chen, The Electrical Engineering Handbook, (Elsevier, 2005).
  22. D. I. Trubetskov and A. E. Khramov, Lectures on Microwave Electronics for Physicists, Vol. 1 (Fizmatlit, Moscow, 2003), [in Russian]
  23. S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley, 2006).
  24. K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
    [Crossref]
  25. S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
    [Crossref] [PubMed]
  26. A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, “Thermal radiation from carbon nanotubes in the terahertz range,” Phys. Rev. Lett. 99(14), 147403 (2007).
    [Crossref] [PubMed]

2017 (1)

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

2015 (3)

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

L. Martín-Moreno, F. J. de Abajo, and F. J. García-Vidal, “Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube,” Phys. Rev. Lett. 115(17), 173601 (2015).
[Crossref] [PubMed]

D. A. Svintsov, A. V. Arsenin, and D. Yu. Fedyanin, “Full loss compensation in hybrid plasmonic waveguides under electrical pumping,” Opt. Express 23(15), 19358–19375 (2015).
[Crossref] [PubMed]

2014 (1)

F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

2013 (2)

A. Moradi, “Surface plasmon–polariton modes of metallic single-walled carbon nanotubes,” Photon. Nanostructures 11(1), 85–88 (2013).
[Crossref]

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

2012 (3)

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

D. Yu. Fedyanin, “Toward an electrically pumped spaser,” Opt. Lett. 37(3), 404–406 (2012).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

2010 (2)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

2009 (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
[Crossref]

R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
[Crossref]

2007 (1)

A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, “Thermal radiation from carbon nanotubes in the terahertz range,” Phys. Rev. Lett. 99(14), 147403 (2007).
[Crossref] [PubMed]

2005 (3)

V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes,” Phys. Rev. Lett. 94(8), 086802 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped Dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

2001 (1)

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

1999 (2)

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

1997 (1)

C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Phys. Rev. Lett. 79(25), 5086–5089 (1997).
[Crossref]

Abramov, A. S.

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

Arsenin, A. V.

Avouris, P.

V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes,” Phys. Rev. Lett. 94(8), 086802 (2005).
[Crossref] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Balents, L.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Phys. Rev. Lett. 79(25), 5086–5089 (1997).
[Crossref]

Batrakov, K. G.

K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
[Crossref]

Bechtel, H. A.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Bockrath, M.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Bronikowski, M. J.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Co, D. T.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Cobden, D. H.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Dadoenkova, Y. S.

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

de Abajo, F. J.

L. Martín-Moreno, F. J. de Abajo, and F. J. García-Vidal, “Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube,” Phys. Rev. Lett. 115(17), 173601 (2015).
[Crossref] [PubMed]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

Dekker, C.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped Dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Fedyanin, D. Yu.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Fisher, M. P. A.

C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Phys. Rev. Lett. 79(25), 5086–5089 (1997).
[Crossref]

Fotiadi, A. A.

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. de Abajo, and F. J. García-Vidal, “Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube,” Phys. Rev. Lett. 115(17), 173601 (2015).
[Crossref] [PubMed]

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Gong, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped Dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Gusakov, A. V.

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hong, X.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Hu, M.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Huntington, M. D.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Janssen, J. W.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kadochkin, A. S.

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

Kane, C.

C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Phys. Rev. Lett. 79(25), 5086–5089 (1997).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Kim, C. H.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Kouwenhoven, L. P.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Kuzhir, P. P.

K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
[Crossref]

Lakhtakia, A.

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

Lemay, S. G.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Leosson, L.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Li, D.

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

Liu, S.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Liu, W.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Lozovskii, V.

R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
[Crossref]

Lu, J.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Maksimenko, S. A.

K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
[Crossref]

A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, “Thermal radiation from carbon nanotubes in the terahertz range,” Phys. Rev. Lett. 99(14), 147403 (2007).
[Crossref] [PubMed]

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

Martin, M. C.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Martín-Moreno, L.

L. Martín-Moreno, F. J. de Abajo, and F. J. García-Vidal, “Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube,” Phys. Rev. Lett. 115(17), 173601 (2015).
[Crossref] [PubMed]

McEuen, P. L.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Moiseev, S. G.

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

Mooij, M.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Moradi, A.

A. Moradi, “Surface plasmon–polariton modes of metallic single-walled carbon nanotubes,” Photon. Nanostructures 11(1), 85–88 (2013).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nemilentsau, A. M.

A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, “Thermal radiation from carbon nanotubes in the terahertz range,” Phys. Rev. Lett. 99(14), 147403 (2007).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Odom, T. W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Perebeinos, V.

V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes,” Phys. Rev. Lett. 94(8), 086802 (2005).
[Crossref] [PubMed]

Rinzler, A. G.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Schrader, S.

R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
[Crossref]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped Dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shen, Y. R.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Shi, Z.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Slepyan, G. Ya.

A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, “Thermal radiation from carbon nanotubes in the terahertz range,” Phys. Rev. Lett. 99(14), 147403 (2007).
[Crossref] [PubMed]

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

Smalley, R. E.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

Stockman, M. I.

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Suh, J. Y.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Svintsov, D. A.

Taniguchi, T.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Tersoff, J.

V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes,” Phys. Rev. Lett. 94(8), 086802 (2005).
[Crossref] [PubMed]

Thomsen, C.

K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
[Crossref]

Tsykhonya, A.

R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
[Crossref]

van den Hout, M.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Wallis, R. F.

R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
[Crossref]

Wang, F.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Wasielewski, M. R.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Watanabe, K.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Willis, P. A.

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

Yevtushenko, O.

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

Zeng, B.

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Zhang, P.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhang, Y.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhong, R.

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

Zhou, W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zolotovskii, I. O.

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

ACS Photonics (1)

F. J. García de Abajo, “Graphene plasmonics: Challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Ann. Phys. (1)

Y. S. Dadoenkova, S. G. Moiseev, A. S. Abramov, A. S. Kadochkin, A. A. Fotiadi, and I. O. Zolotovskii, “Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure,” Ann. Phys. 529(5), 1700037 (2017).
[Crossref]

Nano Lett. (1)

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[Crossref]

M. C. Gather, K. Meerholz, N. Danz, and L. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[Crossref]

Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, “Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes,” Nat. Photonics 9(8), 515–519 (2015).
[Crossref]

Nature (4)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, “Two-dimensional imaging of electronic wavefunctions in carbon nanotubes,” Nature 412(6847), 617–620 (2001).
[Crossref] [PubMed]

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598–601 (1999).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

R. F. Wallis, V. Lozovskii, S. Schrader, and A. Tsykhonya, “Possibility of surface plasmon-polaritons amplification by direct current in two-interface systems with 2D Bragg structure on the surface,” Opt. Commun. 282(16), 3257–3265 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photon. Nanostructures (1)

A. Moradi, “Surface plasmon–polariton modes of metallic single-walled carbon nanotubes,” Photon. Nanostructures 11(1), 85–88 (2013).
[Crossref]

Phys. Rev. B (2)

G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60(24), 17136–17149 (1999).
[Crossref]

K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir, and C. Thomsen, “Carbon nanotube as a Cherenkov-type light emitter and free electron laser,” Phys. Rev. B 79(12), 125408 (2009).
[Crossref]

Phys. Rev. Lett. (7)

S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, and M. Hu, “Surface polariton Cherenkov light radiation source,” Phys. Rev. Lett. 109(15), 153902 (2012).
[Crossref] [PubMed]

A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, “Thermal radiation from carbon nanotubes in the terahertz range,” Phys. Rev. Lett. 99(14), 147403 (2007).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. de Abajo, and F. J. García-Vidal, “Ultraefficient coupling of a quantum emitter to the tunable guided plasmons of a carbon nanotube,” Phys. Rev. Lett. 115(17), 173601 (2015).
[Crossref] [PubMed]

V. Perebeinos, J. Tersoff, and P. Avouris, “Electron-phonon interaction and transport in semiconducting carbon nanotubes,” Phys. Rev. Lett. 94(8), 086802 (2005).
[Crossref] [PubMed]

C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Phys. Rev. Lett. 79(25), 5086–5089 (1997).
[Crossref]

D. Li and M. I. Stockman, “Electric spaser in the extreme quantum limit,” Phys. Rev. Lett. 110(10), 106803 (2013).
[Crossref] [PubMed]

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped Dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[Crossref] [PubMed]

Other (3)

W. K. Chen, The Electrical Engineering Handbook, (Elsevier, 2005).

D. I. Trubetskov and A. E. Khramov, Lectures on Microwave Electronics for Physicists, Vol. 1 (Fizmatlit, Moscow, 2003), [in Russian]

S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Single-walled CNT of the length L. The direction of the electric current is shown with red arrow, and ( ρ,φ,z ) are cylindrical coordinates. (b) Spatial distribution of the electric field component Ez of the SPP wave.

Fig. 2
Fig. 2

Dispersion of the SPP and drift current parameters: (a) SPP propagation constant β (solid red line), SPP phase velocity V ph (solid blue line) and charge-drift velocity V0 = 5·107 cm/s (dashed blue line); (b) SPP amplification coefficient a.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E z ( ρ<a )= E 0z I 0 ( qρ ) I 0 ( qa ) , H z ( ρ<a )= H 0z I 0 ( qρ ) d I 0 ( x )/dx| x=qa , E z ( ρ>a )= E 0z K 0 ( qρ ) K 0 ( qa ) , H z ( ρ>a )= H 0z K 0 ( qρ ) K 0 ( x )/x| x=qa ; ,
E r = β ω ε 0 H φ =i β q 2 d E z dr , H r = β ω μ 0 E φ =i β q 2 d H z dr .
i ε 0 ω a q 2 I 0 ( qa ) K 0 ( qa ) σ zz 0 =0,
σ zz 0 = i n s e 2 m e ω ω(ω+iγ)η q 2
d E z dz +i ω V ph E z = 1 2 ( ω V ph ) 2 B I d ,
B I 0 ( βa ) K 0 ( βa ) 2π ε 0 V g .
d 2 J d z 2 +2i ω V 0 dJ dz 1 V 0 2 ( ω 2 ω q 2 )J=i ω V 0 I d0 2 U 0 E z ,
(ωG V ph )[ (ωG V 0 ) 2 ω q 2 ]= C 3 ω 3 ,
C= ( B I d 4 U 0 V 0 V ph ) 1/3 = ( π a 2 ω q 2 V g V ph I 0 ( βa ) K 0 ( βa ) ) 1/3 .

Metrics