Abstract

The forked grating coupler (FGC) is an optical vortex interface for silicon photonics. Using the structure of a Bragg grating coupler with a calculated forked hologram, the FGC couples optical vortex modes into confined waveguide modes of a photonic integrated circuit. Design methodologies are given, as well as measured performance data from fabricated devices. Data are analyzed with a variety of metrics. The effectiveness of design features are evaluated. Advanced FGC designs are demonstrated with focused forked gratings, allowing feed length to be reduced, and with apodization improving vortex mode fidelity. Some configurations achieve over 25 dB multiplexing crosstalk isolation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics

Mikael Antelius, Kristinn B. Gylfason, and Hans Sohlström
Opt. Express 19(4) 3592-3598 (2011)

CMOS-compatible high efficiency double-etched apodized waveguide grating coupler

Chao Li, Huijuan Zhang, Mingbin Yu, and G. Q. Lo
Opt. Express 21(7) 7868-7874 (2013)

Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings

Peng Chen, Bing-Yan Wei, Wei Ji, Shi-Jun Ge, Wei Hu, Fei Xu, Vladimir Chigrinov, and Yan-Qing Lu
Photon. Res. 3(4) 133-139 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
    [Crossref] [PubMed]
  2. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [Crossref]
  3. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
    [Crossref]
  4. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with − 0 . 58 dB coupling efficiency,” Opt. Lett. 39, 5348–5350 (2014).
    [Crossref]
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  6. V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
    [Crossref] [PubMed]
  7. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18, 2144–2151 (2010).
    [Crossref] [PubMed]
  8. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref] [PubMed]
  9. J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
    [Crossref]
  10. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref] [PubMed]
  11. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7, 1034–1038 (1990).
    [Crossref]
  12. M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [Crossref]
  13. M. R. Dennis, K. O. Holleran, and M. J. Padgett, “Singlar optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
    [Crossref]
  14. V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  15. S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103, 141110 (2013).
    [Crossref]
  16. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  17. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
    [Crossref]
  18. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
    [Crossref] [PubMed]
  19. J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5, 9662 (2015).
    [Crossref] [PubMed]
  20. A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
    [Crossref]
  21. S. Zheng and J. Wang, “On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides,” Opt. Express 25, 18492 (2017).
    [Crossref] [PubMed]
  22. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
    [Crossref] [PubMed]
  23. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012).
    [Crossref] [PubMed]
  24. B. Guan, R. Scott, C. Qin, and N. Fontaine, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22, 145–156 (2014).
    [Crossref] [PubMed]
  25. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455–474 (2013).
    [Crossref]
  26. S. Howison, Practical Applied Mathematics: Modeling, Analysis, Approximation (Cambridge University, 2005), chap. 23, pp. 303–306.
    [Crossref]
  27. A. A. Oliner and D. R. Jackson, “Leaky-Wave Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw Hill, 2007).
  28. K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt. 40, 2886–2894 (2001).
    [Crossref]
  29. H. Y. Yun and C. K. Hong, “Interframe intensity correlation matrix for self-calibration in phase-shifting interferometry,” Appl. Opt. 44, 4860–4869 (2005).
    [Crossref] [PubMed]
  30. R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer Science & Business Media, 2013), chap. 6, p. 411.
  31. I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
    [Crossref]
  32. L. Torner, J. P. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13, 873–881 (2005).
    [Crossref] [PubMed]
  33. A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, “Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator,” Opt. Lett. 38, 534–536 (2013).
    [Crossref] [PubMed]
  34. F. Ricci, W. Löffler, and M. van Exter, “Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer,” Opt. Express 20, 22961–22975 (2012).
    [Crossref] [PubMed]
  35. Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21, 5688–5700 (2013).
    [Crossref] [PubMed]
  36. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32, 2025–2027 (2007).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

2015 (1)

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5, 9662 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (5)

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103, 141110 (2013).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455–474 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, “Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator,” Opt. Lett. 38, 534–536 (2013).
[Crossref] [PubMed]

Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21, 5688–5700 (2013).
[Crossref] [PubMed]

2012 (5)

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012).
[Crossref] [PubMed]

F. Ricci, W. Löffler, and M. van Exter, “Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer,” Opt. Express 20, 22961–22975 (2012).
[Crossref] [PubMed]

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

2010 (1)

2009 (1)

M. R. Dennis, K. O. Holleran, and M. J. Padgett, “Singlar optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

2007 (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32, 2025–2027 (2007).
[Crossref] [PubMed]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

2005 (2)

2004 (2)

2003 (1)

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

2001 (1)

1993 (2)

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

1990 (2)

C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7, 1034–1038 (1990).
[Crossref]

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Alfano, R. R.

Allen, L.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

Arrizón, V.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref] [PubMed]

Barnett, S.

Barnett, S. M.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Basistiy, I. V.

I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Bazhenov, V.

I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Bazhenov, V. Y.

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref] [PubMed]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Bogaerts, W.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Bokor, J.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Cai, X.

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Carrasco, S.

Chujo, K.

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Courtial, J.

Dennis, M. R.

M. R. Dennis, K. O. Holleran, and M. J. Padgett, “Singlar optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Ding, Y.

Djordjevic, S. S.

Du, J.

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5, 9662 (2015).
[Crossref] [PubMed]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Fontaine, N.

Fontaine, N. K.

Franke-Arnold, S.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref] [PubMed]

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Geisler, D. J.

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gibson, G.

Giovannini, D.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Goldberg, K. A.

Guan, B.

Guo, G. C.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

Hamazaki, J.

Holleran, K. O.

M. R. Dennis, K. O. Holleran, and M. J. Padgett, “Singlar optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Hong, C. K.

Howison, S.

S. Howison, Practical Applied Mathematics: Modeling, Analysis, Approximation (Cambridge University, 2005), chap. 23, pp. 303–306.
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Jackson, D. R.

A. A. Oliner and D. R. Jackson, “Leaky-Wave Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw Hill, 2007).

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Kartazaev, V.

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kobayashi, Y.

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Kristensen, P.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455–474 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Le, T.

Li, S.

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103, 141110 (2013).
[Crossref]

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Liow, T.-Y.

Liu, A.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

Löffler, W.

Luan, F.

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Menzel, R.

R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer Science & Business Media, 2013), chap. 6, p. 411.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Morita, R.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Oliner, A. A.

A. A. Oliner and D. R. Jackson, “Leaky-Wave Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw Hill, 2007).

Omatsu, T.

Ostrovsky, A. S.

Ou, H.

Padgett, M.

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Padgett, M. J.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

M. R. Dennis, K. O. Holleran, and M. J. Padgett, “Singlar optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Pas’ko, V.

Peucheret, C.

Qin, C.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455–474 (2013).
[Crossref]

Ren, X.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Ricci, F.

Rickenstorff-Parrao, C.

Romero, J.

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Scott, R.

Scott, R. P.

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Shum, P.

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Soskin, M.

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Soskin, M. S.

I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Su, T.

Sztul, H. I.

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[Crossref] [PubMed]

Tamm, C.

Tanda, S.

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Torner, L.

Torres, J. P.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Van der Veen, H.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

van Exter, M.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Vasnetsov, M.

Vasnetsov, M. V.

I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Wang, J.

S. Zheng and J. Wang, “On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides,” Opt. Express 25, 18492 (2017).
[Crossref] [PubMed]

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5, 9662 (2015).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Wang, Q.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Wang, Z.

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103, 141110 (2013).
[Crossref]

Weiss, C. O.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Woerdman, J.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

Xiao, Z.

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Yao, A. M.

Yoo, S. J. B.

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Yun, H. Y.

Yvind, K.

Zeylikovich, I.

Zhang, J.

Zheng, S.

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Zou, C. L.

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103, 141110 (2013).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

A. Liu, C. L. Zou, X. Ren, Q. Wang, and G. C. Guo, “On-chip generation and control of the vortex beam,” Appl. Phys. Lett. 108, 181103 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. Y. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Nano Lett. (1)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2, 455–474 (2013).
[Crossref]

Opt. Commun. (2)

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

I. V. Basistiy, V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Opt. Express (8)

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref] [PubMed]

L. Torner, J. P. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13, 873–881 (2005).
[Crossref] [PubMed]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012).
[Crossref] [PubMed]

F. Ricci, W. Löffler, and M. van Exter, “Instability of higher-order optical vortices analyzed with a multi-pinhole interferometer,” Opt. Express 20, 22961–22975 (2012).
[Crossref] [PubMed]

Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21, 5688–5700 (2013).
[Crossref] [PubMed]

B. Guan, R. Scott, C. Qin, and N. Fontaine, “Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit,” Opt. Express 22, 145–156 (2014).
[Crossref] [PubMed]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18, 2144–2151 (2010).
[Crossref] [PubMed]

S. Zheng and J. Wang, “On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides,” Opt. Express 25, 18492 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement,” Phys. Rev. A 86, 012334 (2012).
[Crossref]

Phys. Rev. Lett. (1)

V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Prog. Opt. (1)

M. R. Dennis, K. O. Holleran, and M. J. Padgett, “Singlar optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Sci. Rep. (1)

J. Du and J. Wang, “Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array,” Sci. Rep. 5, 9662 (2015).
[Crossref] [PubMed]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref] [PubMed]

Other (3)

S. Howison, Practical Applied Mathematics: Modeling, Analysis, Approximation (Cambridge University, 2005), chap. 23, pp. 303–306.
[Crossref]

A. A. Oliner and D. R. Jackson, “Leaky-Wave Antennas,” in Antenna Engineering Handbook, J. Volakis, ed. (McGraw Hill, 2007).

R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer Science & Business Media, 2013), chap. 6, p. 411.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The forked grating coupler (a) with 1) 12 um × 12 um forked grating, 2) adiabatic taper, 3) buried oxide SiO2, 4) 500 nm × 220 nm silicon waveguide feed, 5) silicon carrier wafer. Incident optical vortex (OV) shown with related coordinate systems. (b) close up of grating implemented with uniform width grooves.

Fig. 2
Fig. 2

SEM photos of typical FGC devices. The χ = 1 device (a) with flat apodization has: 1) continuous grating groove etched down 70 nm, 2) Si waveguide taper, and 3) buried oxide exposed after waveguide outlining etch. Also, shown are a (b) non-apodized (exponential) χ = 1, (c) flat apodized χ = 2, and (d) non-apodized χ = 2 devices.

Fig. 3
Fig. 3

(a) Experimental setup for characterizing the vortex mode fidelity of prototype FGC devices under test (DUT). (b) Simplified plan view of DUT.

Fig. 4
Fig. 4

Input for the IIC algorithm [29] is this typical sequence of ten, spiral interferograms. Also shown are test and reference intensity images (on top and bottom far right) acquired from a typical χ = +1 flat apodized FGC.

Fig. 5
Fig. 5

Processed far field amplitude and phase images for typical flat apodized (a) χ = 1, and (b) χ = 2 devices. The amplitude image is annotated with critical points identified by the metrics: 1) D86 beam perimeter, and 2) measurement circle through max intensity. Algorithm identified nulls, null centroid, intensity centroid, and intensity max point are also marked. Phase image is corrected for spherical and linear tilt phase components. The circular ripples in the phase image are interferogram “print-through” artifacts from the phase recovery processing. They typically appear in areas of low signal-to-noise ratio.

Fig. 6
Fig. 6

Measured far-field amplitude (left) and phase (right) plotted versus measurement circle angle for a typical flat apodized χ = 2 device.

Fig. 7
Fig. 7

Mean charge spectrum calculated from phase and amplitude measurements of the four types of implemented FGC devices. The dark line is the mean measured value for all devices of that type. The shading denotes the sample standard deviation of the measurements.

Tables (4)

Tables Icon

Table 1 Design variants of fabricated prototype FGC devices

Tables Icon

Table 2 Mean measured vortex fidelity metrics of implemented FGC devices. The number following the symbol ± is the sample standard deviation of the measurements.

Tables Icon

Table 3 Mean measured mode mismatch of implemented FGC devices at their design charges. The number following the symbol ± is the sample standard deviation of the measurements.

Tables Icon

Table 4 Mean adjacent charge rejection (ACR) and opposite charge rejection (OCR).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

0 r β eff ( u , ϕ ) d u + 2 π m = χ tan 1 y cos θ x + k y sin θ
α ( y ) = 1 2 | A ( y ) | 2 S ( L ) η S ( y ) ,
α ( r ) = 1 2 r ( r | A ( r ) | 2 + S ( r ) ) S ( r L ) / η S ( r L ) η S ( r ) ,
a χ = 1 2 π 0 2 π u ( ρ , φ ) e i χ ϕ d φ ,
I b I χ = ( r 0 w ) 2 | χ | 2 | χ | | χ | ! ,

Metrics