Abstract

Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical switch. By integrating vanadium dioxide (a PCM) within a Si photonic waveguide, in a non-resonant geometry, we achieve ~10 dB broadband optical contrast with a PCM length of 500 nm using thermal actuation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors

Arash Joushaghani, Junho Jeong, Suzanne Paradis, David Alain, J. Stewart Aitchison, and Joyce K. S. Poon
Opt. Express 23(3) 3657-3668 (2015)

Electro-optical phase-change 2 × 2 switching using three- and four-waveguide directional couplers

Haibo Liang, Richard Soref, Jianwei Mu, Xun Li, and Wei-Ping Huang
Appl. Opt. 54(19) 5897-5902 (2015)

Numerical investigations of an optical switch based on a silicon stripe waveguide embedded with vanadium dioxide layers

Lei Chen, Han Ye, Yumin Liu, Dong Wu, Rui Ma, and Zhongyuan Yu
Photon. Res. 5(4) 335-339 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [PubMed]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
  3. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [PubMed]
  4. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
  5. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
  6. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
  7. Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).
  8. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express 20(20), 22224–22232 (2012).
    [PubMed]
  9. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [PubMed]
  10. J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
    [PubMed]
  11. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
  12. J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
    [PubMed]
  13. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
    [PubMed]
  14. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).
  15. K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).
  16. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
  17. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
  18. C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
  19. J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).
  20. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Cond. Mater. 12, 8837 (2000).
  21. Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).
  22. V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
    [PubMed]
  23. D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
    [PubMed]
  24. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).
  25. K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Optical modulation in silicon-vanadium dioxide photonic structures,” in Proc. of SPIE Nanoscience + Engineering, 103451D (2017).
  26. H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, and W. P. Huang, “Simulations of silicon-on-insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer,” J. Lightwave Technol. 33, 1805–1813 (2015).
  27. B. Janjan, M. Miri, A. Zarifkar, and M. Heidari, “Design and simulation of compact optical modulators and switches based on Si-VO2-Si horizontal slot waveguides,” J. Lightwave Technol. 35, 3020–3028 (2017).
  28. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [PubMed]
  29. Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), JTh5C.4.

2017 (2)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

B. Janjan, M. Miri, A. Zarifkar, and M. Heidari, “Design and simulation of compact optical modulators and switches based on Si-VO2-Si horizontal slot waveguides,” J. Lightwave Technol. 35, 3020–3028 (2017).

2016 (1)

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

2015 (5)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[PubMed]

H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, and W. P. Huang, “Simulations of silicon-on-insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer,” J. Lightwave Technol. 33, 1805–1813 (2015).

2014 (3)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

2013 (3)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
[PubMed]

2012 (2)

2011 (2)

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

2010 (1)

2009 (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

2008 (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

2007 (1)

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Cond. Mater. 12, 8837 (2000).

1969 (1)

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).

Absil, P.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Alain, D.

Alloatti, L.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Asghari, M.

Asselberghs, I.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Atwater, H. A.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Berglund, C. N.

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).

Bhaskaran, H.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Bijlani, B.

Bogaerts, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Brems, S.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Briggs, R. M.

Bruhács, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Chaker, M.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Changhyun, K.

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

Chatelain, R. P.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Choi, B. K.

Conley, H. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

Cudazzo, P.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Cunningham, J.

Dalton, L. R.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Diez-Blanco, V.

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Ehrke, H.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Fedeli, J. M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Feng, D.

Fong, J.

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Freude, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Gatti, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Gibaud, A.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

Green, W. M. J.

Guggenheim, H. J.

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Haglund, R. F.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
[PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
[PubMed]

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).

Halabica, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Hallman, K. A.

Heidari, M.

Hendaoui, A.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Heni, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Herzog, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Hu, Y.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Huang, W. P.

Huber, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Huyghebaert, C.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Janjan, B.

Jeong, J.

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Joushaghani, A.

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Kana Kana, J. B.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Koeber, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Koenig, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Koos, C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Korn, D.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Krishnamoorthy, A. V.

Kübler, C.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

Lauermann, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Leitenstorfer, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Leuthold, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Li, X.

Liang, H.

Liao, S.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[PubMed]

Lopez, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Luff, B. J.

Luo, Y.

Maaza, M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

Majumdar, A.

Markov, P.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).

Marvel, R. E.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
[PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
[PubMed]

K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).

McGahan, C. L.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Miller, K. J.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).

Miri, M.

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

Morrison, V. R.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Mouli, C.

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

Mu, J.

Nag, J.

Ndjaka, J. M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

Osmond, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Palmer, R.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Pantouvaki, M.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Paradis, S.

Pashkin, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Cond. Mater. 12, 8837 (2000).

Pernice, W. H. P.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

Poon, J. K. S.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[PubMed]

Pruneri, V.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Pryce, I. M.

Ramanathan, S.

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

Ríos, C.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Rooks, M. J.

Rubio, A.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Rudé, M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Ryckman, J. D.

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Schindler, P. C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[PubMed]

Sekaric, L.

Shafiiha, R.

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Simpson, R. E.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Siwick, B. J.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Soref, R.

Stähler, J.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Cond. Mater. 12, 8837 (2000).

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Cond. Mater. 12, 8837 (2000).

Stegmaier, M.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

Stewart Aitchison, J.

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

Tiwari, K. L.

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Van Campenhout, J.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

van der Tol, J. J. G. M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

Van Thourhout, D.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Vignaud, G.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

Vlasov, Y. A.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

Wegkamp, D.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Weiss, S. M.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
[PubMed]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
[PubMed]

K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Woessner, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Wolf, M.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Wright, C. D.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

Wuttig, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Xian, L.

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Xiaonan, C.

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[PubMed]

You, Z.

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

Yu, H.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

Zarifkar, A.

Zheng, Y.

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

ACS Photonics (1)

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optically monitored electrical switching in VO2,” ACS Photonics 2, 1175–1182 (2015).

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).

Appl. Phys. Lett. (2)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).

IEEE Electron Device Lett. (1)

Z. You, C. Xiaonan, K. Changhyun, Y. Zheng, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34, 220–222 (2013).

J. Lightwave Technol. (2)

J. Phys. Cond. Mater. (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Cond. Mater. 12, 8837 (2000).

Laser Photonics Rev. (1)

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. Van Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photonics Rev. 10, 307–316 (2016).

Light Sci. Appl. (2)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).

Nat. Mater. (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[PubMed]

Nat. Photonics (2)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[PubMed]

Opt. Commun. (1)

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284, 807–812 (2011).

Opt. Express (6)

Phys. Rev. (1)

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).

Phys. Rev. B (1)

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011).

Phys. Rev. Lett. (1)

D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stähler, “Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping,” Phys. Rev. Lett. 113(21), 216401 (2014).
[PubMed]

Science (1)

V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, “A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction,” Science 346(6208), 445–448 (2014).
[PubMed]

Other (3)

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Optical modulation in silicon-vanadium dioxide photonic structures,” in Proc. of SPIE Nanoscience + Engineering, 103451D (2017).

K. J. Miller, P. Markov, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Hybrid silicon-vanadium dioxide electro-optic modulators,” in Proc. of SPIE OPTO, 975203–975207 (2016).

Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), JTh5C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic for simulation of VO2 embedded Si waveguide switch. The VO2 embedded Si waveguide switch is shown in gray (Si) and green (VO2). The purple arrow surrounded by the gray box and yellow box represent the optical source and monitor, respectively. For the fundamental TE mode, (b) simulated transmission as a function of LVO2 through VO2 embedded Si waveguide switch with VO2 in its semiconducting (blue circles) and metallic (red squares). Optical properties of VO2 are taken from [19]. (c) Insertion loss and (d) extinction ratio of VO2 embedded Si waveguide switch as a function of LVO2, calculated from transmission data shown in (b). With the exception of the semiconducting VO2 curve fit in (b) which is a single exponential fit, the corresponding curve fits in (b), (c), and (d) serve as guides to the eye.

Fig. 2
Fig. 2

SEM image of bifurcated Si waveguides (false colored navy) including integrated heaters (false colored gold). In the center of the figure, the small boxes highlight VO2 embedded Si waveguide switches (orange) and control waveguides (light blue). The left insets with orange outline show SEM images after the patterning of the Si waveguide and trench (top) and backfilling with VO2 (bottom), which is shown in false colored green. The right inset outlined in light blue shows the control Si waveguide.

Fig. 3
Fig. 3

(a) Tilted SEM images of VO2 embedded Si waveguide switches with LVO2 = 300, 600, and 900 nm. VO2 is shown in false colored green. (b) AFM image of VO2 embedded Si waveguide switch with LVO2 = 1000 nm. Vertical profile of line cut (black line outlined in white) is presented in (c), showing a VO2 thickness of ~180 nm within the trench. (d) Temperature dependent transmission measurements on a thin film VO2 witness sample. The red and blue curves show transmission with increasing and decreasing temperature, respectively.

Fig. 4
Fig. 4

(a) Raw (thin lines) and smoothed (thick lines) data for transmitted power through a VO2 embedded Si waveguide switch with LVO2 = 600 nm. Blue curves correspond to 0 W applied electrical power (i.e., VO2 in semiconducting state) and red curves correspond to 1.41 W applied electrical power (i.e., VO2 in metallic state). (b) Extinction ratio of same sample for various applied electrical power, calculated from the smoothed spectra.

Fig. 5
Fig. 5

Measured transmission through VO2 embedded Si waveguide switch as a function of LVO2, normalized to transmission through a reference Si waveguide, for VO2 in its (a) semiconducting and (b) metallic state. Calculated (c) insertion loss and (d) extinction ratio of VO2 embedded Si waveguide switch as a function of LVO2 based on measured data in (a) and (b). The solid curves present Lumerical simulation results (VO2 optical properties from [19]) that assume partial VO2 filling of the Si trench, as described in Section 6.

Fig. 6
Fig. 6

Measured extinction ratio for Si-VO2 waveguide switches with VO2 on top of (red data points and upper right SEM image) and embedded within (blue data points and lower right SEM image) the Si waveguide.

Metrics