Abstract

THz-bandwidth pulses are generated, transmitted along a gold-plated stainless steel metallic slit waveguide, and detected with 1.5 THz bandwidth and 60 dB dynamic range. The source and detector were edge-pumped slotlines on LT-GaAs placed within the near-field region of the waveguide entrance and exit aperture. The motivation for this work was to develop a complete dispersion-free THz system which was simple to manufacture and could be utilized for free-space waveguide experimentation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter

Robert Smith, Afshin Jooshesh, Jinye Zhang, and Thomas Darcie
Opt. Express 25(9) 10118-10125 (2017)

Electric field detection of phase-locked near-infrared pulses using photoconductive antenna

I. Katayama, R. Akai, M. Bito, E. Matsubara, and M. Ashida
Opt. Express 21(14) 16248-16254 (2013)

THz generation using extrinsic photoconductivity at 1550 nm

J. R. Middendorf and E. R. Brown
Opt. Express 20(15) 16504-16509 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
    [Crossref]
  2. D. Auston, Picosecond Photoconductors: Physical Properties and Applications (Academic Press,1984).
  3. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
    [Crossref]
  4. D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
    [Crossref]
  5. D. Krökel, D. Grischkowsky, and M. B. Ketchen, “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes,” Appl. Phys. Lett. 54, 1046–1047 (1989).
    [Crossref]
  6. D. Rutledge, D. Neikirk, and D. Kasilingam, Integrated-Circuit Antennas (Academic Press,1983).
  7. J. Nees, S. Williamson, and G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989).
    [Crossref]
  8. H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
    [Crossref]
  9. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
    [Crossref]
  10. M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
    [Crossref]
  11. R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
    [Crossref]
  12. R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter,” Opt. Express 25, 10118 (2017).
    [Crossref] [PubMed]
  13. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643 (2010).
    [Crossref] [PubMed]
  14. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
    [Crossref]
  15. S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
    [Crossref]
  16. M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry,” Opt. Express 19, 12509–12514 (2011).
    [Crossref] [PubMed]
  17. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [Crossref]
  18. J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
    [Crossref]
  19. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
    [Crossref]
  20. Y.-H. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  21. L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
    [Crossref]

2017 (2)

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter,” Opt. Express 25, 10118 (2017).
[Crossref] [PubMed]

2016 (1)

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

2014 (1)

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

2008 (1)

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

2007 (2)

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[Crossref]

2001 (1)

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
[Crossref]

1994 (1)

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
[Crossref]

1991 (1)

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

1989 (2)

D. Krökel, D. Grischkowsky, and M. B. Ketchen, “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes,” Appl. Phys. Lett. 54, 1046–1047 (1989).
[Crossref]

J. Nees, S. Williamson, and G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989).
[Crossref]

1988 (1)

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

1986 (1)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

1983 (1)

D. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
[Crossref]

Ahmed, F.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Auston, D.

D. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
[Crossref]

D. Auston, Picosecond Photoconductors: Physical Properties and Applications (Academic Press,1984).

Calawa, A. R.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Chen, T. C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Chen, X.-P.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Cheng, H.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
[Crossref]

Chi, C.-C.

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Coutaz, J.-L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
[Crossref]

Darcie, T.

R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter,” Opt. Express 25, 10118 (2017).
[Crossref] [PubMed]

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Dietz, R.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Duling, I.

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

Duling, I. N.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
[Crossref]

Fan, S.

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Garet, F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
[Crossref]

Globisch, B.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Göbel, T.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Grischkowsky, D.

D. Krökel, D. Grischkowsky, and M. B. Ketchen, “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes,” Appl. Phys. Lett. 54, 1046–1047 (1989).
[Crossref]

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Gupta, S.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Halas, N.

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

Halas, N. J.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Halbout, J.-M.

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

He, N.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Jooshesh, A.

R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter,” Opt. Express 25, 10118 (2017).
[Crossref] [PubMed]

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Jun, M.

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Kash, J. A.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Kasilingam, D.

D. Rutledge, D. Neikirk, and D. Kasilingam, Integrated-Circuit Antennas (Academic Press,1983).

Katehi, L.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
[Crossref]

Ketchen, M.

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

Ketchen, M. B.

D. Krökel, D. Grischkowsky, and M. B. Ketchen, “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes,” Appl. Phys. Lett. 54, 1046–1047 (1989).
[Crossref]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Krökel, D.

D. Krökel, D. Grischkowsky, and M. B. Ketchen, “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes,” Appl. Phys. Lett. 54, 1046–1047 (1989).
[Crossref]

Kurz, H.

M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry,” Opt. Express 19, 12509–12514 (2011).
[Crossref] [PubMed]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Lee, Y.-H.

Y.-H. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Li, G. P.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

Matheisen, C.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

May, P.

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

Mendis, R.

Michalski, A.

Mittleman, D. M.

Mourou, G.

J. Nees, S. Williamson, and G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989).
[Crossref]

Mourou, G. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Nagel, M.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

M. Nagel, A. Michalski, and H. Kurz, “Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry,” Opt. Express 19, 12509–12514 (2011).
[Crossref] [PubMed]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Nees, J.

J. Nees, S. Williamson, and G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989).
[Crossref]

Neikirk, D.

D. Rutledge, D. Neikirk, and D. Kasilingam, Integrated-Circuit Antennas (Academic Press,1983).

Roux, J.-F.

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
[Crossref]

Rutledge, D.

D. Rutledge, D. Neikirk, and D. Kasilingam, Integrated-Circuit Antennas (Academic Press,1983).

Sawallich, S.

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

Smith, F. W.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Smith, R.

R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter,” Opt. Express 25, 10118 (2017).
[Crossref] [PubMed]

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Veronis, G.

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Wei, Q.-Q.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Weller, T.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
[Crossref]

Whitaker, J.

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
[Crossref]

Whitaker, J. F.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Williamson, S.

J. Nees, S. Williamson, and G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989).
[Crossref]

Xiao, J.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Yang, D.-G.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Zhan, H.

Zhang, G.-Q.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Zhang, J.

R. Smith, A. Jooshesh, J. Zhang, and T. Darcie, “THz-TDS using a photoconductive free-space linear tapered slot antenna transmitter,” Opt. Express 25, 10118 (2017).
[Crossref] [PubMed]

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Zhang, P.

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

Appl. Phys. Lett. (7)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751–753 (1986).
[Crossref]

D. Krökel, D. Grischkowsky, and M. B. Ketchen, “Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes,” Appl. Phys. Lett. 54, 1046–1047 (1989).
[Crossref]

J. Nees, S. Williamson, and G. Mourou, “100 GHz traveling-wave electro-optic phase modulator,” Appl. Phys. Lett. 54, 1962–1964 (1989).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92, 161102 (2008).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

IEEE J. Quantum Electron. (2)

D. Grischkowsky, M. Ketchen, C.-C. Chi, I. Duling, N. Halas, J.-M. Halbout, and P. May, “Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines,” IEEE J. Quantum Electron. 24, 221–225 (1988).
[Crossref]

D. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19, 639–648 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Xiao, Q.-Q. Wei, D.-G. Yang, P. Zhang, N. He, G.-Q. Zhang, and X.-P. Chen, “Hybrid plasmonics slot THz waveguide for subwavelength field confinement and crosstalk between two waveguides,” IEEE J. Sel. Top. Quantum Electron. 23, 1–5 (2017).
[Crossref]

L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron. 7, 615–623 (2001).
[Crossref]

IEEE Microw. Guided Wave Lett. (1)

H. Cheng, J. Whitaker, T. Weller, and L. Katehi, “Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane,” IEEE Microw. Guided Wave Lett. 4, 89–91 (1994).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R. Dietz, and T. Göbel, “Photoconductive terahertz near-field detectors for operation with 1550-nm pulsed fiber lasers,” IEEE Trans. Terahertz Sci. Technol. 6, 365–370 (2016).
[Crossref]

J. Lightwave Technol. (2)

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[Crossref]

R. Smith, F. Ahmed, A. Jooshesh, J. Zhang, M. Jun, and T. Darcie, “THz field enhancement by antenna coupling to a tapered thick slot waveguide,” J. Lightwave Technol. 32, 15878 (2014).
[Crossref]

Opt. Express (3)

Other (3)

D. Rutledge, D. Neikirk, and D. Kasilingam, Integrated-Circuit Antennas (Academic Press,1983).

D. Auston, Picosecond Photoconductors: Physical Properties and Applications (Academic Press,1984).

Y.-H. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Supplementary Material (2)

NameDescription
» Visualization 1       Simulated transient pulse transmission in the xz-plane
» Visualization 2       Simulated transient pulse transmission in the yz-plane

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Design of the THz system. (a) Overall structure. (b) Transmitter active area and optical excitation location. (c) Receiver active area and optical excitation location. (d) Configuration of experimental structure (top-down view). (e) Cross-section of MSWG and definitions. (f) Cross-section of slotline and definitions.

Fig. 2
Fig. 2

Transmission line representation of circuit

Fig. 3
Fig. 3

MSWG attenuation solved with Ansys HFSS. The attenuation for various separations is plotted. Traces (f)–(g) are plotted to verify that our simulation results align with the results presented in [9]. The real part of the Z0 pv characteristic impedance is also plotted.

Fig. 4
Fig. 4

Time-domain simulation illustrating the field coupled into MSWG 4 ps after excitation. The MSWG was set to a PEC. W=20µm, S=80µm→160µm. a) xz-plane (for video see Visualization 1). b) yz-plane (for video see Visualization 2).

Fig. 5
Fig. 5

Time-domain simulation which illustrates the field coupled to the MSWG from the slotline for a selection of gap sizes between the slotline and MSWG. S = 80 µm, W = 20 µm, T = 51 µm. a) Temporal response for various gap sizes normalized to the case without a gap. b) Frequency-dependent attenuation for various gap sizes relative to the case without a gap.

Fig. 6
Fig. 6

Experimental setup. An 80 fs 780 nm laser beam is split into two paths, one directed to the transmitter through a mechanical delay line for THz generation, the other directed to the receiver for detection. A 25 mm MSWG connects the slotline based transmitter and receiver.

Fig. 7
Fig. 7

Time-domain signals and respective Discrete Fourier Transform (DFT). (a) Experimental signal detected using the designed structure. (b) Autocorrelation of Eq. (1) fitted to signal (τp = 0.21 ps, τc = 0.39 ps, τs = 0.08 ps). (c) Simulated response, the receiver voltage was obtained with Ansys HFSS transient, the conductivity was obtained from Eq. (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ 1 ( t ) = σ 2 ( t ) exp ( τ p 2 4 τ c 2 t τ c ) erfc ( τ p 2 τ c t τ p ) exp ( τ p 2 4 τ c s 2 t τ c s ) erfc ( τ p 2 τ c s t τ p ) ,

Metrics