Abstract

Next-generation gravitational wave detectors require single-frequency and high power lasers at a wavelength of 1.5 µm addressing a set of demanding requirements such as linearly-polarized TEM00 radiation with low noise to run for long periods. In this context, fiber amplifiers in MOPA configuration are promising candidates to fulfill these requirements. We present a single-frequency monolithic Er:Yb co-doped fiber amplifier (EYDFA) at 1.5 µm with a linearly-polarized TEM00 output power of 100 W. The EYDFA is pumped off-resonant at 940 nm to enhance the Yb-to-Er energy transfer efficiency and enable higher ASE threshold. We also performed numerical simulations to investigate the off-resonant pumping scheme and confirm the corresponding experimental results.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
TEM00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power

Malte Karow, Chandrajit Basu, Dietmar Kracht, Jörg Neumann, and Peter Weßels
Opt. Express 20(5) 5319-5324 (2012)

Co-seeded Er3+:Yb3+ single frequency fiber amplifier with 60 W output power and over 90% TEM00 content

M. Steinke, A. Croteau, C. Paré, H. Zheng, P. Laperle, A. Proulx, J. Neumann, D. Kracht, and P. Wessels
Opt. Express 22(14) 16722-16730 (2014)

100-W single-frequency master-oscillator fiber power amplifier

A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann
Opt. Lett. 28(17) 1537-1539 (2003)

References

  • View by:
  • |
  • |
  • |

  1. ET Science Team, Einstein gravitational wave Telescope Conceptual Design Study, 2011.
  2. J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. DiGiovanni, “Effects of concentration and clusters in erbium-doped fiber lasers,” Opt. Lett. 18(23), 2014–2016 (1993).
    [Crossref] [PubMed]
  3. M. Steinke, A. Croteau, C. Paré, H. Zheng, P. Lampere, A. Proulx, J. Neumann, D. Kracht, and P. Wessels, “Co-seeded Er3+:Yb3+ single frequency fiber amplifier with 60 W output power and over 90 % TEM00 content,” Opt. Express 22(14), 16722–16730 (2014).
    [Crossref] [PubMed]
  4. V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper CM2N.8.
  5. M. A. Jebali, J. N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er–Yb codoped fiber laser using in-band pumping”, Opt. Lett. 39(13), 3974–3977 (2014).
    [Crossref] [PubMed]
  6. D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
    [Crossref]
  7. M. Karásek, “Optimum Design of Er3+–Yb3+ Codoped Fibers for Large-Signal High-Pump-Power Applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
    [Crossref]
  8. Q. Han, J. Ning, and Z. Sheng, “Numerical Investigations and Power Scaling of Cladding-Pumped Er-Yb Codoped Fiber Amplifiers,” IEEE J. Quantum Electron. 46(11), 1535–1541 (2010).
    [Crossref]
  9. M. Wysmolek, Laser Zentrum Hannover e. V., Hollerithallee 8, Hannover 30167 is preparing a manuscript to be called “Micro-structured fiber cladding light stripper for kW-class laser systems.”
  10. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [Crossref]
  11. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Quantum Electron. 7(4), 504–517 (2011).
    [Crossref]
  12. J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headlay, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007).
    [Crossref] [PubMed]
  13. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006).
    [Crossref] [PubMed]
  14. T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
    [Crossref] [PubMed]
  15. Q. Han, Y. Yao, Y. Chen, F. Liu, T. Liu, and H. Xiao, “Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber Bragg grating,” Opt. Lett. 40(11), 2634–2636 (2015).
    [Crossref] [PubMed]
  16. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er, Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
    [Crossref] [PubMed]
  17. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
    [Crossref] [PubMed]
  18. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
    [Crossref] [PubMed]
  19. V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Er-doped Photonic crystal fiber amplifier with 70 W of output power,” Opt. Lett. 36(16), 3030–3032 (2011).
    [Crossref] [PubMed]
  20. M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Er3+:Yb3+ co-doped fiber amplifiers,” Opt. Express 23(11), 14946–14959 (2015).
    [Crossref] [PubMed]
  21. J. B. Camp, H. Yamamoto, and S. E. Whitcomb, “Analysis of light noise sources in a recycled Michelson interferometer with Fabry–Perot arms,” J. Opt. Soc. Am. A 17(1), 120–128 (2000).
    [Crossref]
  22. M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
    [Crossref]
  23. M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
    [Crossref] [PubMed]

2016 (1)

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

2015 (2)

2014 (2)

2012 (1)

2011 (2)

V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Er-doped Photonic crystal fiber amplifier with 70 W of output power,” Opt. Lett. 36(16), 3030–3032 (2011).
[Crossref] [PubMed]

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Quantum Electron. 7(4), 504–517 (2011).
[Crossref]

2010 (1)

Q. Han, J. Ning, and Z. Sheng, “Numerical Investigations and Power Scaling of Cladding-Pumped Er-Yb Codoped Fiber Amplifiers,” IEEE J. Quantum Electron. 46(11), 1535–1541 (2010).
[Crossref]

2008 (1)

2007 (3)

2006 (1)

2005 (1)

2000 (1)

1998 (1)

1997 (2)

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
[Crossref]

M. Karásek, “Optimum Design of Er3+–Yb3+ Codoped Fibers for Large-Signal High-Pump-Power Applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
[Crossref]

1993 (1)

Büsche, S.

Camp, J. B.

Chen, Y.

Chraplyvy, A. R.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
[Crossref]

Clarkson, W. A.

Creeden, D.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Croteau, A.

Danzmann, K.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[Crossref] [PubMed]

DiGiovanni, D. J.

Digonnet, M. J. F.

Feder, K.

J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headlay, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper CM2N.8.

Fermann, M. E.

Fini, J. M.

Frede, M.

Galvanauskas, A.

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Quantum Electron. 7(4), 504–517 (2011).
[Crossref]

Han, Q.

Q. Han, Y. Yao, Y. Chen, F. Liu, T. Liu, and H. Xiao, “Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber Bragg grating,” Opt. Lett. 40(11), 2634–2636 (2015).
[Crossref] [PubMed]

Q. Han, J. Ning, and Z. Sheng, “Numerical Investigations and Power Scaling of Cladding-Pumped Er-Yb Codoped Fiber Amplifiers,” IEEE J. Quantum Electron. 46(11), 1535–1541 (2010).
[Crossref]

Headlay, C.

Hildebrandt, M.

Horowitz, M.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
[Crossref]

Jebali, M. A.

Karásek, M.

M. Karásek, “Optimum Design of Er3+–Yb3+ Codoped Fibers for Large-Signal High-Pump-Power Applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
[Crossref]

Kracht, D.

Kuhn, V.

Kwee, P.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[Crossref] [PubMed]

Lampere, P.

LaRochelle, S.

Limongelli, J.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Liu, F.

Liu, T.

Maran, J. N.

Neumann, J.

Nicholson, J. W.

J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headlay, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper CM2N.8.

Ning, J.

Q. Han, J. Ning, and Z. Sheng, “Numerical Investigations and Power Scaling of Cladding-Pumped Er-Yb Codoped Fiber Amplifiers,” IEEE J. Quantum Electron. 46(11), 1535–1541 (2010).
[Crossref]

Overmeyer, L.

Paré, C.

Pretorius, H.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Proulx, A.

Sahu, J. K.

Sayinc, H.

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[Crossref] [PubMed]

Setzler, S. D.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Shaw, H. J.

Shen, D. Y.

Sheng, Z.

Q. Han, J. Ning, and Z. Sheng, “Numerical Investigations and Power Scaling of Cladding-Pumped Er-Yb Codoped Fiber Amplifiers,” IEEE J. Quantum Electron. 46(11), 1535–1541 (2010).
[Crossref]

Steinke, M.

Supradeepa, V. R.

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper CM2N.8.

Theeg, T.

Tkach, R. W.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
[Crossref]

Wagener, J. L.

Wessels, P.

Weßels, P.

Westbrook, P. S.

Whitcomb, S. E.

Wielandy, S.

Willke, B.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[Crossref] [PubMed]

Wysocki, P. F.

Xiao, H.

Yablon, A. D.

Yamamoto, H.

Yao, Y.

Zheng, H.

Zyskind, J. L.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Karásek, “Optimum Design of Er3+–Yb3+ Codoped Fibers for Large-Signal High-Pump-Power Applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
[Crossref]

Q. Han, J. Ning, and Z. Sheng, “Numerical Investigations and Power Scaling of Cladding-Pumped Er-Yb Codoped Fiber Amplifiers,” IEEE J. Quantum Electron. 46(11), 1535–1541 (2010).
[Crossref]

A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Quantum Electron. 7(4), 504–517 (2011).
[Crossref]

IEEE Phot. Technol. Lett. (1)

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin in Single-Mode Fibers,” IEEE Phot. Technol. Lett. 9(1), 124–126 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (7)

Opt. Lett. (6)

Proc. SPIE (1)

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560nm Er:Yb fiber amplifier with 207W output power and 50.5% slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Rev. Sci. Instrum. (1)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum. 78, 073103 (2007).
[Crossref] [PubMed]

Other (3)

M. Wysmolek, Laser Zentrum Hannover e. V., Hollerithallee 8, Hannover 30167 is preparing a manuscript to be called “Micro-structured fiber cladding light stripper for kW-class laser systems.”

ET Science Team, Einstein gravitational wave Telescope Conceptual Design Study, 2011.

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave Erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper CM2N.8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Energy level diagram of Er:Yb co-doped systems. n i represents the population densities of the energy levels, W ji are the rates between energy levels, and τij are the lifetimes of the energy levels respectively.

Fig. 2
Fig. 2

Results of the simulations for pump wavelengths of 915, 940 and 976 nm in green, blue and red respectively. Solid lines are the amplifier output power (left axis) and dashed lines are the ASE power (right axis).

Fig. 3
Fig. 3

Setup of the experiment. SM: Single-mode, LMA: Large mode area, DC: Double clad.

Fig. 4
Fig. 4

a): Amplifier slope. Squares: Measured data. Line: Linear fit. The optical to optical efficiency is calculated to be 46.2%. b): Amplifier spectrum at maximum output power measured with a resolution bandwidth of 0.01 nm. ASE suppression ratio >58 dB.

Fig. 5
Fig. 5

Output power (Blue) and PER (Red) evolution during 1-hour measurement.

Fig. 6
Fig. 6

Modal content measurement setup.

Fig. 7
Fig. 7

Evolution of the TEM00 mode content with output power.

Fig. 8
Fig. 8

Mode scan at an output power of 111 W. The vertical axis represents the normalized intensity and the horizontal axis is normalized frequency. Red: 100-times averaged measurement. Blue: Fit of a large set of modes. Green: Theoretical pure TEM00 mode.

Fig. 9
Fig. 9

Relative power noise measurement setup.

Fig. 10
Fig. 10

RPN of seed source and amplifier output at 55 W and 110 W in red, black and blue, respectively.

Fig. 11
Fig. 11

a): Frequency noise of the seed source and amplifier output at 55 W and 110 W in red, black and blue respectively. b): Corresponding calculated frequency noise bandwidth.

Fig. 12
Fig. 12

Relative power noise at different output power levels. The absence of power-dependent increase of the floor noise indicates that the SBS threshold has not been reached. The contribution of dark photocurrents and shot noise are also shown.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n 2 t = n 2 τ 21 + n 3 τ 32 + W 12 n 1 W 21 n 2 2 C up N Er n 2 2 ,
n 3 t = n 3 τ 32 + W 13 n 1 + R 61 N Yb n 6 n 1 R 35 N Yb n 3 n 5 + C up N Er n 2 2 ,
n 6 t = n 6 τ 65 + W 56 n 5 W 65 n 6 R 61 N Er n 6 n 1 + R 35 N Er n 3 n 5 ,
n 1 = 1 n 2 n 3 ,
n 5 = 1 n 6 ,
P p z = [ n 6 c 65 ( λ p ) n 5 c 56 ( λ p ) n 1 c 13 ( λ p ) ] P p ,
P s z = [ n 2 c 21 ( λ s ) n 1 c 12 ( λ s ) ] P s ,
P Yb , k z = [ n 6 c 65 ( λ k ) n 5 c 56 ( λ k ) n 1 c 13 ( λ k ) ] P Yb , k + 2 h c 2 λ k 3 n 6 c 65 Δ λ ,
B W ( f 0 ) = [ f 0 [ S ( H z / H z ) ] 2 d f ] 1 / 2 ,

Metrics