Abstract

By emulating the phyllotaxis structure of natural plants, which has an efficient and stable light capture capability, a two-dimensional spiral grating is introduced on the surface of crystalline silicon solar cells to obtain both efficient and stable light absorption. Using the rigorous coupled wave analysis method, the absorption performance on structural parameter variations of spiral gratings is investigated firstly. Owing to diffraction resonance and excellent superficies antireflection, the integrated absorption of the optimal spiral grating cell is raised by about 77 percent compared with the conventional slab cell. Moreover, though a 15 percent deviation of structural parameters from the optimal spiral grating is applied, only a 5 percent decrease of the absorption is observed. This reveals that the performance of the proposed grating would tolerate large structural variations. Furthermore, the angular and polarization dependence on the absorption of the optimized cell is studied. For average polarizations, a small decrease of only 11 percent from the maximum absorption is observed within an incident angle ranging from −70 to 70 degrees. The results show promising application potentials of the biomimetic spiral grating in the solar cell.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications (Springer, 2004), Chap. 2.
  2. J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
    [Crossref]
  3. K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures,” Opt. Express 23(19), A1040–A1050 (2015).
    [Crossref] [PubMed]
  4. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
    [Crossref] [PubMed]
  5. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
  6. W. I. Nam, Y. J. Yoo, and Y. M. Song, “Geometrical shape design of nanophotonic surfaces for thin film solar cells,” Opt. Express 24(14), A1033–A1044 (2016).
    [Crossref] [PubMed]
  7. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3), A433–A439 (2013).
  8. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
    [Crossref] [PubMed]
  9. B. Angelo, L. Marco, and A. L. Claudio, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1237–1245 (2014).
  10. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013).
  11. C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
    [Crossref] [PubMed]
  12. H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk, C. Seassal, and E. Drouard, “Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells,” Opt. Express 24(6), A650–A666 (2016).
    [Crossref] [PubMed]
  13. V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovolt. 4(1), 175–182 (2014).
    [Crossref]
  14. X. Guo, D. Wang, B. Liu, S. Li, and X. Sheng, “Enhanced light absorption in thin film silicon solar cells with Fourier-series based periodic nanostructures,” Opt. Express 24(2), A408–A413 (2016).
    [Crossref] [PubMed]
  15. E. R. Martins, J. Li, Y. K. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
    [Crossref]
  16. J. Muller, A. Herman, A. Mayer, and O. Deparis, “A fair comparison between ultrathin crystalline-silicon solar cells with either periodic or correlated disorder inverted pyramid textures,” Opt. Express 23(11), A657–A670 (2015).
    [Crossref] [PubMed]
  17. E. Thouti, A. K. Sharma, and V. K. Komarala, “Role of textured silicon surface in plasmonic light trapping for solar cells: the effect of pyramids width and height,” IEEE J. Photovolt. 6(6), 1403–1406 (2016).
    [Crossref]
  18. C. Uhrenfeldt, T. F. Villesen, A. Têtu, B. Johansen, and A. N. Larsen, “Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front,” Opt. Express 23(11), A525–A538 (2015).
    [Crossref] [PubMed]
  19. J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P. M. Fauchet, “Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both,” Opt. Express 23(3), A92–A105 (2015).
    [Crossref] [PubMed]
  20. Y. Zhang, B. Jia, and M. Gu, “Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells,” Opt. Express 24(6), A506–A514 (2016).
    [Crossref] [PubMed]
  21. A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
    [Crossref]
  22. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  23. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
    [Crossref]
  24. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
    [Crossref]
  25. V. Liu and S. Fan, “S4: A free electromagnetic solve for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  26. T. Sekimura, “The diversity in shoot morphology of herbaceous plants in relation to solar radiation captured by leaves,” J. Theor. Biol. 177(3), 289–298 (1995).
    [Crossref]
  27. R. W. Pearcy and W. Yang, “A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants,” Oecologia 108(1), 1–12 (1996).
    [Crossref] [PubMed]
  28. F. Valladares and D. Brites, “Leaf phyllotaxis: Does it really affect light capture?” Plant Ecol. 174(1), 11–17 (2004).
    [Crossref]
  29. H. Hellwig, R. Engelmann, and O. Deussen, “Contact pressure models for spiral phyllotaxis and their computer simulation,” J. Theor. Biol. 240(3), 489–500 (2006).
    [Crossref] [PubMed]
  30. H. C. Holland, “The archimedes spiral,” Nature 179(4556), 432–433 (1957).
    [Crossref]
  31. Melanie, “Whimsical nature,” http://moonfruitmuse.deviantart.com/art/Whimsical-Nature-76524657 .
  32. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
    [Crossref] [PubMed]
  33. N. A. Yahaya, N. Yamada, Y. Kotaki, and T. Nakayama, “Characterization of light absorption in thin-film silicon with periodic nanohole arrays,” Opt. Express 21(5), 5924–5930 (2013).
    [Crossref] [PubMed]
  34. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [Crossref]
  35. E. D. Palik, Handbook of Optical Constant of Solids (Acadmic, 1985).
  36. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
    [Crossref]
  37. J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
    [Crossref] [PubMed]
  38. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
    [Crossref] [PubMed]
  39. Y. Shi, X. Wang, W. Liu, T. Yang, J. Ma, and F. Yang, “Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells,” Opt. Express 22(17), 20473–20480 (2014).
    [Crossref] [PubMed]
  40. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  41. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18(6), 5481–5495 (2010).
    [Crossref] [PubMed]

2016 (6)

2015 (4)

2014 (3)

Y. Shi, X. Wang, W. Liu, T. Yang, J. Ma, and F. Yang, “Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells,” Opt. Express 22(17), 20473–20480 (2014).
[Crossref] [PubMed]

B. Angelo, L. Marco, and A. L. Claudio, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1237–1245 (2014).

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovolt. 4(1), 175–182 (2014).
[Crossref]

2013 (4)

2012 (5)

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[Crossref] [PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[Crossref] [PubMed]

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

V. Liu and S. Fan, “S4: A free electromagnetic solve for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

E. R. Martins, J. Li, Y. K. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

2011 (2)

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

2010 (2)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18(6), 5481–5495 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2006 (1)

H. Hellwig, R. Engelmann, and O. Deussen, “Contact pressure models for spiral phyllotaxis and their computer simulation,” J. Theor. Biol. 240(3), 489–500 (2006).
[Crossref] [PubMed]

2004 (2)

F. Valladares and D. Brites, “Leaf phyllotaxis: Does it really affect light capture?” Plant Ecol. 174(1), 11–17 (2004).
[Crossref]

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

1996 (1)

R. W. Pearcy and W. Yang, “A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants,” Oecologia 108(1), 1–12 (1996).
[Crossref] [PubMed]

1995 (2)

T. Sekimura, “The diversity in shoot morphology of herbaceous plants in relation to solar radiation captured by leaves,” J. Theor. Biol. 177(3), 289–298 (1995).
[Crossref]

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

1957 (1)

H. C. Holland, “The archimedes spiral,” Nature 179(4556), 432–433 (1957).
[Crossref]

Andreani, L. C.

Angelo, B.

B. Angelo, L. Marco, and A. L. Claudio, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1237–1245 (2014).

Bozzola, A.

Brites, D.

F. Valladares and D. Brites, “Leaf phyllotaxis: Does it really affect light capture?” Plant Ecol. 174(1), 11–17 (2004).
[Crossref]

Burresi, M.

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Chang, J. Y.

Claudio, A. L.

B. Angelo, L. Marco, and A. L. Claudio, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1237–1245 (2014).

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

De Zoysa, M.

Deparis, O.

Depauw, V.

Deussen, O.

H. Hellwig, R. Engelmann, and O. Deussen, “Contact pressure models for spiral phyllotaxis and their computer simulation,” J. Theor. Biol. 240(3), 489–500 (2006).
[Crossref] [PubMed]

Dewan, R.

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Ding, H.

Dmitriev, A.

Drouard, E.

El Daif, O.

Engelmann, R.

H. Hellwig, R. Engelmann, and O. Deussen, “Contact pressure models for spiral phyllotaxis and their computer simulation,” J. Theor. Biol. 240(3), 489–500 (2006).
[Crossref] [PubMed]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solve for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Fauchet, P. M.

Fave, A.

Fu, S. M.

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

Ganapati, V.

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovolt. 4(1), 175–182 (2014).
[Crossref]

Gjessing, J.

Gomard, G.

Gonzalez-Acevedo, B.

Gordon, I.

Graf, U.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Green, M. A.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Gu, M.

Guo, X.

Hellwig, H.

H. Hellwig, R. Engelmann, and O. Deussen, “Contact pressure models for spiral phyllotaxis and their computer simulation,” J. Theor. Biol. 240(3), 489–500 (2006).
[Crossref] [PubMed]

Herman, A.

Holland, H. C.

H. C. Holland, “The archimedes spiral,” Nature 179(4556), 432–433 (1957).
[Crossref]

Huang, C. F.

Hungerford, C.

Ishizaki, K.

Jia, B.

Johansen, B.

Kaminski, A.

Kawamoto, Y.

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Knipp, D.

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Komarala, V. K.

E. Thouti, A. K. Sharma, and V. K. Komarala, “Role of textured silicon surface in plasmonic light trapping for solar cells: the effect of pyramids width and height,” IEEE J. Photovolt. 6(6), 1403–1406 (2016).
[Crossref]

Kotaki, Y.

Kowalczewski, P.

Krauss, T. F.

Kroll, U.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Lai, S. Y.

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

Lai, W. M.

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

Lalouat, L.

Larsen, A. N.

Lee, K.

Lee, Y. C.

Lemiti, M.

Letartre, X.

Lewis, L.

Li, J.

E. R. Martins, J. Li, Y. K. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Li, S.

Lin, A. S.

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

Liscidini, M.

Liu, B.

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solve for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Liu, W.

Liu, Y. K.

E. R. Martins, J. Li, Y. K. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Ma, J.

Madzharov, D.

Marco, L.

B. Angelo, L. Marco, and A. L. Claudio, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1237–1245 (2014).

Marstein, E. S.

Martins, E. R.

Massiot, I.

Mayer, A.

Meier, J.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Meng, X.

Mertens, R.

Miller, O. D.

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovolt. 4(1), 175–182 (2014).
[Crossref]

Muller, J.

Nakayama, T.

Nam, W. I.

Noda, S.

Orobtchouk, R.

Park, Y.

Patrini, M.

Pearcy, R. W.

R. W. Pearcy and W. Yang, “A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants,” Oecologia 108(1), 1–12 (1996).
[Crossref] [PubMed]

Peretti, R.

Pillai, S.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

Poortmans, J.

Pratesi, F.

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Reardon, C.

Riboli, F.

Rothberg, L. J.

Sargent, E. H.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Schuster, C. S.

Scullion, M. G.

Seassal, C.

Sekimura, T.

T. Sekimura, “The diversity in shoot morphology of herbaceous plants in relation to solar radiation captured by leaves,” J. Theor. Biol. 177(3), 289–298 (1995).
[Crossref]

Shah, A.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Sharma, A. K.

E. Thouti, A. K. Sharma, and V. K. Komarala, “Role of textured silicon surface in plasmonic light trapping for solar cells: the effect of pyramids width and height,” IEEE J. Photovolt. 6(6), 1403–1406 (2016).
[Crossref]

Sheng, X.

Shi, Y.

Shome, K.

Song, Y. M.

Spitznagel, J.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Sudbø, A.

Tanaka, Y.

Tang, J.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Têtu, A.

Thouti, E.

E. Thouti, A. K. Sharma, and V. K. Komarala, “Role of textured silicon surface in plasmonic light trapping for solar cells: the effect of pyramids width and height,” IEEE J. Photovolt. 6(6), 1403–1406 (2016).
[Crossref]

Trompoukis, C.

Tseng, C. W.

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

Uhrenfeldt, C.

Umeda, T.

Valladares, F.

F. Valladares and D. Brites, “Leaf phyllotaxis: Does it really affect light capture?” Plant Ecol. 174(1), 11–17 (2004).
[Crossref]

Vallat-Sauvain, E.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Viktorovitch, P.

Villesen, T. F.

Vynck, K.

Wang, D.

Wang, X.

Wiersma, D. S.

Winans, J. D.

Wu, M. L.

Yablonovitch, E.

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovolt. 4(1), 175–182 (2014).
[Crossref]

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Yahaya, N. A.

Yamada, N.

Yang, F.

Yang, T.

Yang, W.

R. W. Pearcy and W. Yang, “A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants,” Oecologia 108(1), 1–12 (1996).
[Crossref] [PubMed]

Yoo, Y. J.

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zhang, Y.

Zhong, Y. K.

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. K. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Adv. Mater. (1)

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solve for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

IEEE J. Photovolt. (2)

E. Thouti, A. K. Sharma, and V. K. Komarala, “Role of textured silicon surface in plasmonic light trapping for solar cells: the effect of pyramids width and height,” IEEE J. Photovolt. 6(6), 1403–1406 (2016).
[Crossref]

V. Ganapati, O. D. Miller, and E. Yablonovitch, “Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells,” IEEE J. Photovolt. 4(1), 175–182 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (2)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

J. Opt. (1)

A. S. Lin, Y. K. Zhong, S. M. Fu, C. W. Tseng, S. Y. Lai, and W. M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt. 15(10), 105007 (2013).
[Crossref]

J. Theor. Biol. (2)

H. Hellwig, R. Engelmann, and O. Deussen, “Contact pressure models for spiral phyllotaxis and their computer simulation,” J. Theor. Biol. 240(3), 489–500 (2006).
[Crossref] [PubMed]

T. Sekimura, “The diversity in shoot morphology of herbaceous plants in relation to solar radiation captured by leaves,” J. Theor. Biol. 177(3), 289–298 (1995).
[Crossref]

Nat. Photonics (1)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012).
[Crossref]

Nature (1)

H. C. Holland, “The archimedes spiral,” Nature 179(4556), 432–433 (1957).
[Crossref]

Oecologia (1)

R. W. Pearcy and W. Yang, “A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants,” Oecologia 108(1), 1–12 (1996).
[Crossref] [PubMed]

Opt. Express (19)

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[Crossref] [PubMed]

N. A. Yahaya, N. Yamada, Y. Kotaki, and T. Nakayama, “Characterization of light absorption in thin-film silicon with periodic nanohole arrays,” Opt. Express 21(5), 5924–5930 (2013).
[Crossref] [PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[Crossref] [PubMed]

Y. Shi, X. Wang, W. Liu, T. Yang, J. Ma, and F. Yang, “Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells,” Opt. Express 22(17), 20473–20480 (2014).
[Crossref] [PubMed]

J. Muller, A. Herman, A. Mayer, and O. Deparis, “A fair comparison between ultrathin crystalline-silicon solar cells with either periodic or correlated disorder inverted pyramid textures,” Opt. Express 23(11), A657–A670 (2015).
[Crossref] [PubMed]

X. Guo, D. Wang, B. Liu, S. Li, and X. Sheng, “Enhanced light absorption in thin film silicon solar cells with Fourier-series based periodic nanostructures,” Opt. Express 24(2), A408–A413 (2016).
[Crossref] [PubMed]

C. Uhrenfeldt, T. F. Villesen, A. Têtu, B. Johansen, and A. N. Larsen, “Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front,” Opt. Express 23(11), A525–A538 (2015).
[Crossref] [PubMed]

J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P. M. Fauchet, “Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both,” Opt. Express 23(3), A92–A105 (2015).
[Crossref] [PubMed]

Y. Zhang, B. Jia, and M. Gu, “Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells,” Opt. Express 24(6), A506–A514 (2016).
[Crossref] [PubMed]

K. Ishizaki, M. De Zoysa, Y. Tanaka, T. Umeda, Y. Kawamoto, and S. Noda, “Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures,” Opt. Express 23(19), A1040–A1050 (2015).
[Crossref] [PubMed]

Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008).
[Crossref] [PubMed]

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).

W. I. Nam, Y. J. Yoo, and Y. M. Song, “Geometrical shape design of nanophotonic surfaces for thin film solar cells,” Opt. Express 24(14), A1033–A1044 (2016).
[Crossref] [PubMed]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3), A433–A439 (2013).

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013).

C. Trompoukis, I. Massiot, V. Depauw, O. El Daif, K. Lee, A. Dmitriev, I. Gordon, R. Mertens, and J. Poortmans, “Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells,” Opt. Express 24(2), A191–A201 (2016).
[Crossref] [PubMed]

H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk, C. Seassal, and E. Drouard, “Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells,” Opt. Express 24(6), A650–A666 (2016).
[Crossref] [PubMed]

J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express 18(6), 5481–5495 (2010).
[Crossref] [PubMed]

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. K. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012).
[Crossref]

Plant Ecol. (1)

F. Valladares and D. Brites, “Leaf phyllotaxis: Does it really affect light capture?” Plant Ecol. 174(1), 11–17 (2004).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (2)

B. Angelo, L. Marco, and A. L. Claudio, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1237–1245 (2014).

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Sol. Energy (1)

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[Crossref]

Other (3)

Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications (Springer, 2004), Chap. 2.

E. D. Palik, Handbook of Optical Constant of Solids (Acadmic, 1985).

Melanie, “Whimsical nature,” http://moonfruitmuse.deviantart.com/art/Whimsical-Nature-76524657 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A 3D schematic of the spiral grating cell and the insert image presents the leaf structure of begonia. (b) Cross-sectional view of the spiral grating cell. (c) Top view of the spiral grating cell where the black cross in the center of the spiral structure denotes the origin point.

Fig. 2
Fig. 2

The short-circuit current density Jsc of the spiral grating cell as a function of p and d.

Fig. 3
Fig. 3

The short-circuit current density of the spiral grating solar cell as a function of the etching height with the whole silicon layer kept with a fixed value of 1 μm (a) and the grating height with the bottom un-etching silicon layer kept with a fixed thickness of 500 nm (b).

Fig. 4
Fig. 4

The (a) reflection spectra, (b) transmission spectra and (c) absorption spectra of the spiral grating and the slab under normal incidence from AM1.5 solar irradiance. The Yablonvitch limit (blue) and the single-pass absorption spectra (green) are referenced in (c) with the schematics presenting the corresponding grating structures in (c). (d) Comparison of the short-circuit currents Jsc generated by the spiral grating and slab (gray bars), the Yablonvitch limit (blue line), and the single-pass absorption (black dotted line).

Fig. 5
Fig. 5

Electric field intensity profiles at (a, d, g) 450nm, (b, e, h) 700nm, and (c, f, i) 940 nm for slab cell (a-c) and spiral grating (d-i), respectively. The profiles (a-f) and (g-i) are obtained in the X-Z plane and in the X-Y plane, respectively. The black lines present the interfaces between the grating and the ITO material. The magnitudes of electric-field intensity enhancement are indicated by the color scales.

Fig. 6
Fig. 6

The short circuit current densities as a function of the incident angle for the optimized spiral grating, under P (follow the X axis), S (follow the Y axis) and average polarized illuminations. The zero-degree angle refers to the normal incidence to the solar cell surface.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A cSi (λ)=1R(λ)T(λ)
J sc = e hc λ A cSi (λ)S(λ)dλ