Abstract

We report on the fabrication of ring-shaped waveguides operating at the telecommunication band in a cubic Bi4Ge3O12 (BGO) crystal by using technique of femtosecond laser writing. In the regions of laser written tracks in BGO crystal, positive refractive index is induced, resulting in so-called Type I configuration. The modal profiles are within the designed track cladding with ring-shaped geometries, which are analogous to circular optical lattices. The homogenous guidance along both TE and TM polarizations has been obtained at telecommunication wavelength of 1.55 μm. Both straight and S-curved waveguiding structures have been produced with ring-shaped configurations. This work paves the way to fabricate complex photonic networks for telecommunications by using ring-shaped waveguides in compact chips.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals

Ruiyun He, Qiang An, Javier R. Vázquez de Aldana, Qingming Lu, and Feng Chen
Appl. Opt. 52(16) 3713-3718 (2013)

Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing

Ruiyun He, Irene Hernández-Palmero, Carolina Romero, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 22(25) 31293-31298 (2014)

Low-loss curved waveguides in polymers written with a femtosecond laser

Welm M. Pätzold, Ayhan Demircan, and Uwe Morgner
Opt. Express 25(1) 263-270 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
    [Crossref]
  2. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
    [Crossref] [PubMed]
  3. A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
    [Crossref] [PubMed]
  4. H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
    [Crossref] [PubMed]
  5. W. M. Pätzold, A. Demircan, and U. Morgner, “Low-loss curved waveguides in polymers written with a femtosecond laser,” Opt. Express 25(1), 263–270 (2017).
    [Crossref] [PubMed]
  6. K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
    [Crossref]
  7. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30(9), 1060–1062 (2005).
    [Crossref] [PubMed]
  8. A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
    [Crossref] [PubMed]
  9. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [Crossref] [PubMed]
  10. D. Lin and W. A. Clarkson, “End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam,” Opt. Lett. 42(15), 2910–2913 (2017).
    [Crossref]
  11. D. J. Kim, S. H. Noh, S. M. Ahn, and J. W. Kim, “Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers,” Opt. Express 25(13), 14668–14675 (2017).
    [Crossref] [PubMed]
  12. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  14. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
    [Crossref] [PubMed]
  15. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  17. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  18. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
    [Crossref] [PubMed]
  19. R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
    [Crossref] [PubMed]
  20. J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
    [Crossref] [PubMed]
  21. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
    [Crossref]
  22. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [Crossref] [PubMed]
  23. R. He, Q. An, J. R. Vázquez de Aldana, Q. Lu, and F. Chen, “Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals,” Appl. Opt. 52(16), 3713–3718 (2013).
    [Crossref] [PubMed]
  24. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
    [Crossref] [PubMed]
  25. J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
    [Crossref]
  26. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  27. T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  28. W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
    [Crossref]
  29. B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
    [Crossref]
  30. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [Crossref]
  31. RSoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com .

2017 (3)

2016 (3)

2015 (2)

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

2014 (5)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

2009 (3)

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
[Crossref] [PubMed]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2005 (1)

2004 (1)

1998 (1)

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

1996 (1)

1989 (1)

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Aditya, S.

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

Aguiló, M.

Ahn, S. M.

Alù, A.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Ams, M.

An, Q.

Antipov, S.

Arriola, A.

Beecher, S. J.

Berkowski, M.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Brown, G.

Calmano, T.

Charles, N.

Chen, D.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Chen, F.

Cheng, Y.

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Clarkson, W. A.

Davis, K. M.

Demircan, A.

Díaz, F.

Dong, G. P.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Drozdowski, W.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Fleury, R.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Fuerbach, A.

Fujimoto, J. G.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gross, S.

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Hao, X.

He, R.

Hernández-Palmero, I.

Hirao, K.

Huber, G.

T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ippen, E. P.

Jaque, D.

Jipa, F.

Jovanovic, N.

Kaczmarek, S. M.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Kar, A. K.

Khanikaev, A. B.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Kim, D. J.

Kim, J. W.

Koai, K. T.

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Kowalevicz, A. M.

Kränkel, C.

Kumar, A.

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Liao, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Lin, D.

Liu, P. L.

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Lopez, C.

Lu, Q.

Luo, F. F.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Lv, J.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Magi, E.

Martínez, J.

Mary, R.

Maznev, A. A.

A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Midorikawa, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Minoshima, K.

Miura, K.

Morgner, U.

Mousavi, S. H.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Müller, S.

Nguyen, H.-D.

Noh, S. H.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ohara, S.

Olaizola, S. M.

Paschke, A. G.

Pätzold, W. M.

Pavel, N.

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Pujol, M. C.

Qian, B.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Qiu, J. R.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Richardson, K.

Richardson, M.

Rodenas, A.

Ródenas, A.

Romero, C.

Salamu, G.

Sharma, V.

Shen, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Song, J.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Su, L. B.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Sugimoto, N.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Sun, S. Z.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Thomson, R. R.

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Tuthill, P. G.

Vázquez de Aldana, J. R.

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Williams, R. J.

Withford, M. J.

Wojtowicz, A. J.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Xu, Z.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Yuan, W.

Zamfirescu, M.

Zoubir, A.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Chin. Phys. Lett. (1)

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

J. Lightwave Technol. (1)

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Lab Chip (1)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (3)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

Nat. Commun. (1)

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (9)

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
[Crossref] [PubMed]

R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
[Crossref] [PubMed]

J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
[Crossref] [PubMed]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

W. M. Pätzold, A. Demircan, and U. Morgner, “Low-loss curved waveguides in polymers written with a femtosecond laser,” Opt. Express 25(1), 263–270 (2017).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

D. J. Kim, S. H. Noh, S. M. Ahn, and J. W. Kim, “Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers,” Opt. Express 25(13), 14668–14675 (2017).
[Crossref] [PubMed]

T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (2)

Physica B (1)

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Ultrasonics (1)

A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
[Crossref] [PubMed]

Other (1)

RSoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The fabrication of straight and S-curved waveguides in BGO. (a) Schematic plot of the fabrication process with the femtosecond laser. The inset picture is the schematic diagram of S-curved waveguides. L denotes the lateral offset of S-curved waveguides, A1 (50 μm), A2 (100 μm) and A3 (150 μm), respectively. Optical microscope image of the cross section of waveguides (b) No. 1. straight, (c) No. 2. A1 = 50 μm, (d) No. 3. A2 = 100 μm, and (e) No. 4. A3 = 150 μm.

Fig. 2
Fig. 2

Measured near-field modal profiles of waveguides Nos.1-4 (diameters of 50 μm) and Nos. 5-8 (diameters of 100 μm) for TE (left) and TM (right) polarizations at 1550 nm, respectively.

Fig. 3
Fig. 3

Simulated mode profiles and beam propagation at 1.55-μm in straight and S-curved waveguides with different lateral offset A arranging from 50 μm to 150 μm.

Fig. 4
Fig. 4

Polarization images of the propagation loss of waveguides Nos. 1-4 at 1.55 μm.

Tables (1)

Tables Icon

Table 1 Propagation losses α (dB/cm) of BGO straight and S-curved waveguides

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y ( x ) = A sin 2 ( π x 2 L )