Abstract

We report on the fabrication of ring-shaped waveguides operating at the telecommunication band in a cubic Bi4Ge3O12 (BGO) crystal by using technique of femtosecond laser writing. In the regions of laser written tracks in BGO crystal, positive refractive index is induced, resulting in so-called Type I configuration. The modal profiles are within the designed track cladding with ring-shaped geometries, which are analogous to circular optical lattices. The homogenous guidance along both TE and TM polarizations has been obtained at telecommunication wavelength of 1.55 μm. Both straight and S-curved waveguiding structures have been produced with ring-shaped configurations. This work paves the way to fabricate complex photonic networks for telecommunications by using ring-shaped waveguides in compact chips.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing

Ruiyun He, Irene Hernández-Palmero, Carolina Romero, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 22(25) 31293-31298 (2014)

Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals

Ruiyun He, Qiang An, Javier R. Vázquez de Aldana, Qingming Lu, and Feng Chen
Appl. Opt. 52(16) 3713-3718 (2013)

Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal

Jinman Lv, Yazhou Cheng, Weihao Yuan, Xiaotao Hao, and Feng Chen
Opt. Mater. Express 5(6) 1274-1280 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
    [Crossref]
  2. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
    [Crossref] [PubMed]
  3. A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
    [Crossref] [PubMed]
  4. H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
    [Crossref] [PubMed]
  5. W. M. Pätzold, A. Demircan, and U. Morgner, “Low-loss curved waveguides in polymers written with a femtosecond laser,” Opt. Express 25(1), 263–270 (2017).
    [Crossref] [PubMed]
  6. K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
    [Crossref]
  7. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30(9), 1060–1062 (2005).
    [Crossref] [PubMed]
  8. A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
    [Crossref] [PubMed]
  9. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [Crossref] [PubMed]
  10. D. Lin and W. A. Clarkson, “End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam,” Opt. Lett. 42(15), 2910–2913 (2017).
    [Crossref]
  11. D. J. Kim, S. H. Noh, S. M. Ahn, and J. W. Kim, “Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers,” Opt. Express 25(13), 14668–14675 (2017).
    [Crossref] [PubMed]
  12. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  14. S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
    [Crossref] [PubMed]
  15. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  17. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  18. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
    [Crossref] [PubMed]
  19. R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
    [Crossref] [PubMed]
  20. J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
    [Crossref] [PubMed]
  21. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
    [Crossref]
  22. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [Crossref] [PubMed]
  23. R. He, Q. An, J. R. Vázquez de Aldana, Q. Lu, and F. Chen, “Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals,” Appl. Opt. 52(16), 3713–3718 (2013).
    [Crossref] [PubMed]
  24. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
    [Crossref] [PubMed]
  25. J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
    [Crossref]
  26. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  27. T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  28. W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
    [Crossref]
  29. B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
    [Crossref]
  30. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [Crossref]
  31. RSoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com .

2017 (3)

2016 (3)

2015 (2)

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

2014 (5)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

2009 (3)

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
[Crossref] [PubMed]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2005 (1)

2004 (1)

1998 (1)

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

1996 (1)

1989 (1)

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Aditya, S.

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

Aguiló, M.

Ahn, S. M.

Alù, A.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Ams, M.

An, Q.

Antipov, S.

Arriola, A.

Beecher, S. J.

Berkowski, M.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Brown, G.

Calmano, T.

Charles, N.

Chen, D.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Chen, F.

Cheng, Y.

J. Lv, Y. Cheng, W. Yuan, X. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5(6), 1274–1280 (2015).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Clarkson, W. A.

Davis, K. M.

Demircan, A.

Díaz, F.

Dong, G. P.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Drozdowski, W.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Fleury, R.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Fuerbach, A.

Fujimoto, J. G.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gross, S.

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Hao, X.

He, R.

Hernández-Palmero, I.

Hirao, K.

Huber, G.

T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ippen, E. P.

Jaque, D.

Jipa, F.

Jovanovic, N.

Kaczmarek, S. M.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Kar, A. K.

Khanikaev, A. B.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Kim, D. J.

Kim, J. W.

Koai, K. T.

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Kowalevicz, A. M.

Kränkel, C.

Kumar, A.

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Liao, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Lin, D.

Liu, P. L.

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Lopez, C.

Lu, Q.

Luo, F. F.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Lv, J.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Magi, E.

Martínez, J.

Mary, R.

Maznev, A. A.

A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Midorikawa, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Minoshima, K.

Miura, K.

Morgner, U.

Mousavi, S. H.

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Müller, S.

Nguyen, H.-D.

Noh, S. H.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Ohara, S.

Olaizola, S. M.

Paschke, A. G.

Pätzold, W. M.

Pavel, N.

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Pujol, M. C.

Qian, B.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Qiu, J. R.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Richardson, K.

Richardson, M.

Rodenas, A.

Ródenas, A.

Romero, C.

Salamu, G.

Sharma, V.

Shen, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Song, J.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Su, L. B.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Sugimoto, N.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Sun, S. Z.

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

Thomson, R. R.

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Tuthill, P. G.

Vázquez de Aldana, J. R.

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Williams, R. J.

Withford, M. J.

Wojtowicz, A. J.

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Xu, Z.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Yuan, W.

Zamfirescu, M.

Zoubir, A.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd: Y3Al5O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[Crossref]

Chin. Phys. Lett. (1)

B. Qian, Y. Liao, G. P. Dong, F. F. Luo, L. B. Su, S. Z. Sun, and J. R. Qiu, “Femtosecond laser-written waveguides in a bismuth germanate single crystal,” Chin. Phys. Lett. 26(7), 070601 (2009).
[Crossref]

J. Lightwave Technol. (1)

K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices. II. S-shaped channel waveguide bends,” J. Lightwave Technol. 7(7), 1016–1022 (1989).
[Crossref]

Lab Chip (1)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (3)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

A. Kumar and S. Aditya, “Performance of S-bends for integrated-optic waveguides,” Microw. Opt. Technol. Lett. 19(4), 289–292 (1998).
[Crossref]

Nat. Commun. (1)

A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, “Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,” Nat. Commun. 6, 8260 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (9)

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

S. Antipov, M. Ams, R. J. Williams, E. Magi, M. J. Withford, and A. Fuerbach, “Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings,” Opt. Express 24(1), 30–40 (2016).
[Crossref] [PubMed]

H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24(7), 7777–7791 (2016).
[Crossref] [PubMed]

J. Lv, X. Hao, and F. Chen, “Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal,” Opt. Express 24(22), 25482–25490 (2016).
[Crossref] [PubMed]

W. M. Pätzold, A. Demircan, and U. Morgner, “Low-loss curved waveguides in polymers written with a femtosecond laser,” Opt. Express 25(1), 263–270 (2017).
[Crossref] [PubMed]

D. J. Kim, S. H. Noh, S. M. Ahn, and J. W. Kim, “Influence of a ring-shaped pump beam on temperature distribution and thermal lensing in end-pumped solid state lasers,” Opt. Express 25(13), 14668–14675 (2017).
[Crossref] [PubMed]

R. He, I. Hernández-Palmero, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing,” Opt. Express 22(25), 31293–31298 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (2)

Physica B (1)

W. Drozdowski, A. J. Wojtowicz, S. M. Kaczmarek, and M. Berkowski, “Scintillation yield of Bi4Ge3O1 (BGO) pixel crystals,” Physica B 405(6), 1647–1651 (2010).
[Crossref]

Ultrasonics (1)

A. A. Maznev, “Laser-generated surface acoustic waves in a ring-shaped waveguide resonator,” Ultrasonics 49(1), 1–3 (2009).
[Crossref] [PubMed]

Other (1)

RSoft Design Group, Computer software BeamPROP, http://www.rsoftdesign.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The fabrication of straight and S-curved waveguides in BGO. (a) Schematic plot of the fabrication process with the femtosecond laser. The inset picture is the schematic diagram of S-curved waveguides. L denotes the lateral offset of S-curved waveguides, A1 (50 μm), A2 (100 μm) and A3 (150 μm), respectively. Optical microscope image of the cross section of waveguides (b) No. 1. straight, (c) No. 2. A1 = 50 μm, (d) No. 3. A2 = 100 μm, and (e) No. 4. A3 = 150 μm.

Fig. 2
Fig. 2

Measured near-field modal profiles of waveguides Nos.1-4 (diameters of 50 μm) and Nos. 5-8 (diameters of 100 μm) for TE (left) and TM (right) polarizations at 1550 nm, respectively.

Fig. 3
Fig. 3

Simulated mode profiles and beam propagation at 1.55-μm in straight and S-curved waveguides with different lateral offset A arranging from 50 μm to 150 μm.

Fig. 4
Fig. 4

Polarization images of the propagation loss of waveguides Nos. 1-4 at 1.55 μm.

Tables (1)

Tables Icon

Table 1 Propagation losses α (dB/cm) of BGO straight and S-curved waveguides

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y ( x ) = A sin 2 ( π x 2 L )

Metrics