Abstract

The control of light-matter interaction in metasurfaces offers an unexplored potential for the excitation and manipulation of light. Here, we combine experimental terahertz time-domain spectroscopy and near-field scanning terahertz microscopy to demonstrate the role of reciprocal vectors in the transmission and plasmonic resonances of quasicrystal metasurfaces. An investigation of two-dimensional metasurface structures with different rotationally symmetric quasicrystal arrangements demonstrates that the transmission minima resulting from Wood’s anomaly are directly related to the surface plasmon resonances. We also find that the surface plasmon resonances of the quasicrystal metasurface were determined by the reciprocal vectors, which could be well explained by the coupling condition of the resonances, and the characteristic frequencies remain un-shifted under various slit sizes. Our findings demonstrate a new potential in developing novel plasmonic metasurfaces.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays

Amit Agrawal, Tatsunosuke Matsui, Z. Valy Vardeny, and Ajay Nahata
J. Opt. Soc. Am. B 24(9) 2545-2555 (2007)

Transmission resonances in plasmonic metallic gratings

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù
J. Opt. Soc. Am. B 28(2) 253-264 (2011)

Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory

J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, Ch. Lienau, and D. S. Kim
Opt. Express 14(26) 12637-12643 (2006)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  3. D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
    [Crossref] [PubMed]
  4. G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
    [Crossref]
  5. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  6. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
    [Crossref]
  7. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [Crossref] [PubMed]
  8. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
    [Crossref] [PubMed]
  9. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
    [Crossref]
  10. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
    [Crossref]
  11. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
    [Crossref]
  12. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  13. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
    [Crossref]
  14. K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
    [Crossref]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  16. N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
    [Crossref]
  17. F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
    [Crossref]
  18. C. Huang, Q. Wang, and Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
    [Crossref]
  19. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
    [Crossref]
  20. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
    [Crossref]
  21. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  22. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13(20), 7760–7771 (2005).
    [Crossref] [PubMed]
  23. A. N. Poddubny, “Wood anomalies in resonant photonic quasicrystals,” Phys. Rev. B 83(7), 075106 (2011).
    [Crossref]
  24. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. Le Floch, and L. Dutriaux, “Measurement of positive and negative Goos-Hänchen effects for metallic gratings near Wood anomalies,” Opt. Lett. 26(10), 666–668 (2001).
    [Crossref] [PubMed]
  25. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
    [Crossref]
  26. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
    [Crossref] [PubMed]
  27. C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
    [Crossref]
  28. M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B 85(20), 205110 (2012).
    [Crossref]
  29. C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
    [Crossref]
  30. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
    [Crossref] [PubMed]
  31. C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasicrystalline plasmonic arrays,” Phys. Rev. B 84(19), 193104 (2011).
    [Crossref]
  32. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [Crossref] [PubMed]
  33. T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
    [Crossref] [PubMed]
  34. Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
    [Crossref] [PubMed]
  35. Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
    [Crossref]
  36. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
    [Crossref] [PubMed]
  37. A. N. Poddubny and E. L. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E 42(7), 1871–1895 (2010).
    [Crossref]
  38. F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
    [Crossref] [PubMed]
  39. H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
    [Crossref] [PubMed]
  40. N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys. 111(11), 113101 (2012).
    [Crossref] [PubMed]
  41. Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
    [Crossref] [PubMed]
  42. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
    [Crossref]
  43. C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2(1), 681 (2012).
    [Crossref] [PubMed]
  44. K. Ingersent and P. J. Steinhardt, “Matching rules and growth rules for pentagonal quasicrystal tilings,” Phys. Rev. Lett. 64(17), 2034–2037 (1990).
    [Crossref] [PubMed]

2016 (4)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
[Crossref] [PubMed]

2013 (1)

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

2012 (4)

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B 85(20), 205110 (2012).
[Crossref]

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys. 111(11), 113101 (2012).
[Crossref] [PubMed]

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2(1), 681 (2012).
[Crossref] [PubMed]

2011 (2)

C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasicrystalline plasmonic arrays,” Phys. Rev. B 84(19), 193104 (2011).
[Crossref]

A. N. Poddubny, “Wood anomalies in resonant photonic quasicrystals,” Phys. Rev. B 83(7), 075106 (2011).
[Crossref]

2010 (4)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

A. N. Poddubny and E. L. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E 42(7), 1871–1895 (2010).
[Crossref]

2008 (3)

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

2007 (6)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

C. Huang, Q. Wang, and Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (2)

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

2005 (6)

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13(20), 7760–7771 (2005).
[Crossref] [PubMed]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[Crossref] [PubMed]

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

2004 (3)

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[Crossref] [PubMed]

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[Crossref] [PubMed]

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
[Crossref]

2003 (3)

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

2001 (1)

1999 (1)

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

1998 (3)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

1990 (1)

K. Ingersent and P. J. Steinhardt, “Matching rules and growth rules for pentagonal quasicrystal tilings,” Phys. Rev. Lett. 64(17), 2034–2037 (1990).
[Crossref] [PubMed]

Adam, A. J. L.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Agrawal, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Ahn, K. J.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Albooyeh, M.

M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B 85(20), 205110 (2012).
[Crossref]

Antosiewicz, T. J.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

Atwater, H. A.

Azad, A. K.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[Crossref]

Ban, S.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bauer, C.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2(1), 681 (2012).
[Crossref] [PubMed]

C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasicrystalline plasmonic arrays,” Phys. Rev. B 84(19), 193104 (2011).
[Crossref]

Beigang, R.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

Bonnet, C.

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Bretenaker, F.

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Capolino, F.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Chan, C. T.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Chauvat, D.

Cheng, B.

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Crouse, D.

Dal Negro, L.

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys. 111(11), 113101 (2012).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Della Villa, A.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dutriaux, L.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Emile, O.

Enoch, S.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

Feng, N.-N.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Feng, Z.

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Galdi, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

García de Abajo, F. J.

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Giessen, H.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2(1), 681 (2012).
[Crossref] [PubMed]

C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasicrystalline plasmonic arrays,” Phys. Rev. B 84(19), 193104 (2011).
[Crossref]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

Gómez Rivas, J.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Gong, M.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Gopinath, A.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Grischkowsky, D.

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[Crossref] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gu, J.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Han, J.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Hangyo, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Haring Bolivar, P.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Huang, C.

C. Huang, Q. Wang, and Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

Huang, F.

H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
[Crossref] [PubMed]

Ingersent, K.

K. Ingersent and P. J. Steinhardt, “Matching rules and growth rules for pentagonal quasicrystal tilings,” Phys. Rev. Lett. 64(17), 2034–2037 (1990).
[Crossref] [PubMed]

Ivchenko, E. L.

A. N. Poddubny and E. L. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E 42(7), 1871–1895 (2010).
[Crossref]

Jiang, X.

H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
[Crossref] [PubMed]

Jin, C.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Keshavareddy, P.

Kihm, H. W.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Kim, D. S.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kobiela, G.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2(1), 681 (2012).
[Crossref] [PubMed]

C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasicrystalline plasmonic arrays,” Phys. Rev. B 84(19), 193104 (2011).
[Crossref]

Kruk, S. S.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Kurz, H.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Langhammer, C.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

Lawrence, N.

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys. 111(11), 113101 (2012).
[Crossref] [PubMed]

Le Floch, A.

Lederer, F.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Lee, K. G.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[Crossref] [PubMed]

Lezec, H.

Lezec, H. J.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16(12), 9222–9238 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, S.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Li, Y.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Li, Z.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Li, Z.-Y.

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

Liu, L.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Liu, Y.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Lomakin, V.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

Lu, X.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Man, B.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Mayer, T. S.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Michielssen, E.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Miyamaru, F.

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Morits, D.

M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B 85(20), 205110 (2012).
[Crossref]

Nahata, A.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Namin, F. A.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Pacifici, D.

Panaretos, A. H.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[Crossref] [PubMed]

Pierro, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Planken, P. C. M.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Poddubny, A. N.

A. N. Poddubny, “Wood anomalies in resonant photonic quasicrystals,” Phys. Rev. B 83(7), 075106 (2011).
[Crossref]

A. N. Poddubny and E. L. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E 42(7), 1871–1895 (2010).
[Crossref]

Pradarutti, B.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
[Crossref]

Przybilla, F.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Qu, D.

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[Crossref] [PubMed]

Rau, C.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
[Crossref]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Schotsch, C.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Schwanecke, A. S.

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

Seo, M. A.

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

Singh, R.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Steinhardt, P. J.

K. Ingersent and P. J. Steinhardt, “Matching rules and growth rules for pentagonal quasicrystal tilings,” Phys. Rev. Lett. 64(17), 2034–2037 (1990).
[Crossref] [PubMed]

Sun, B.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Sun, X.

H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
[Crossref] [PubMed]

Sweatlock, L. A.

Tanaka, M.

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

Tayeb, G.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Thio, T.

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Torosyan, G.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B 85(20), 205110 (2012).
[Crossref]

Trevino, J.

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys. 111(11), 113101 (2012).
[Crossref] [PubMed]

Vardeny, Z. V.

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Walters, R. J.

Wang, Q.

C. Huang, Q. Wang, and Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

Wang, Y.

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

Werner, D. H.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xu, Q.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Yang, Q.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Yuan, H.

H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
[Crossref] [PubMed]

Yuwen, Y. A.

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

Zäch, M.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

Zentgraf, T.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

Zhang, D.

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Zhang, D.-Z.

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

Zhang, W.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[Crossref]

Zhang, X.

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

Zhao, Y.

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

Zhu, Y.

C. Huang, Q. Wang, and Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

Zoric, I.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85(16), 3372–3374 (2004).
[Crossref]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[Crossref]

N. Papasimakis, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. García de Abajo, “Enhanced microwave transmission through quasicrystal hole arrays,” Appl. Phys. Lett. 91(8), 081503 (2007).
[Crossref]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[Crossref]

C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

J. Appl. Phys. (1)

N. Lawrence, J. Trevino, and L. Dal Negro, “Aperiodic arrays of active nanopillars for radiation engineering,” J. Appl. Phys. 111(11), 113101 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[Crossref]

Nano Lett. (1)

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-Plasmonic Scattering Resonances in Deterministic Aperiodic Structures,” Nano Lett. 8(8), 2423–2431 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals,” Nat. Photonics 7(3), 177–187 (2013).
[Crossref]

Nature (4)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

K. J. Ahn, K. G. Lee, H. W. Kihm, M. A. Seo, A. J. L. Adam, P. C. M. Planken, and D. S. Kim, “Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits,” New J. Phys. 10(10), 105003 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634(16), 1–72 (2016).
[Crossref]

Phys. Rev. B (9)

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

A. N. Poddubny, “Wood anomalies in resonant photonic quasicrystals,” Phys. Rev. B 83(7), 075106 (2011).
[Crossref]

M. Albooyeh, D. Morits, and S. A. Tretyakov, “Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state,” Phys. Rev. B 85(20), 205110 (2012).
[Crossref]

C. Bauer, G. Kobiela, and H. Giessen, “Optical properties of two-dimensional quasicrystalline plasmonic arrays,” Phys. Rev. B 84(19), 193104 (2011).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[Crossref]

F. Miyamaru, M. Tanaka, and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays,” Phys. Rev. B 74(15), 153416 (2006).
[Crossref]

C. Huang, Q. Wang, and Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007).
[Crossref]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Phys. Rev. Lett. (7)

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[Crossref] [PubMed]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[Crossref] [PubMed]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, and C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109(24), 247401 (2012).
[Crossref] [PubMed]

K. Ingersent and P. J. Steinhardt, “Matching rules and growth rules for pentagonal quasicrystal tilings,” Phys. Rev. Lett. 64(17), 2034–2037 (1990).
[Crossref] [PubMed]

Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, “Negative refraction and imaging using 12-fold-symmetry quasicrystals,” Phys. Rev. Lett. 94(24), 247402 (2005).
[Crossref] [PubMed]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Physica E (1)

A. N. Poddubny and E. L. Ivchenko, “Photonic quasicrystalline and aperiodic structures,” Physica E 42(7), 1871–1895 (2010).
[Crossref]

Rev. Mod. Phys. (2)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Sci. Rep. (4)

F. A. Namin, Y. A. Yuwen, L. Liu, A. H. Panaretos, D. H. Werner, and T. S. Mayer, “Efficient design, accurate fabrication and effective characterization of plasmonic quasicrystalline arrays of nano-spherical particles,” Sci. Rep. 6(1), 22009 (2016).
[Crossref] [PubMed]

H. Yuan, X. Jiang, F. Huang, and X. Sun, “Broadband multiple responses of surface modes in quasicrystalline plasmonic structure,” Sci. Rep. 6(1), 30818 (2016).
[Crossref] [PubMed]

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2(1), 681 (2012).
[Crossref] [PubMed]

Q. Yang, X. Zhang, S. Li, Q. Xu, R. Singh, Y. Liu, Y. Li, S. S. Kruk, J. Gu, J. Han, and W. Zhang, “Near-field surface plasmons on quasicrystal metasurfaces,” Sci. Rep. 6(1), 26 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) and (d) Schematics of PAM and eight-fold rotationally symmetric QCM with slits patterned on metallic films. The polyimide layers of the samples have been neglected here for a clear depiction of the structures. Insets are the partial enlarged image of slits. The individual slit sizes are a = 80 μm (width) and b = 200 μm (length). (b) and (e) Partial reciprocal spaces of the PAM and eight-fold QCM calculated by 2D Fourier transform. (c) and (f) Simulated (solid lines) and measured (dashed lines) transmission resonances of PAM and eight-fold QCM for varied grating constants: 500 μm (olive), 750 μm (red), and 1000 μm (navy).

Fig. 2
Fig. 2

(a) The NSTM setup used in the measurements. Three dots with diverse colors in enlarged views of optical images for PAM and QCM denote the positions of measurement by the THz probe. The simulated (solid lines) and measured (dashed lines) plasmonic resonances of PAM with three grating constants: 500 μm (b), 750 μm (c), and 1000 μm (d). For better illustration, the plasmonic resonances have the same color as the dots. (e-g) Corresponding plasmonic resonances of eight-fold QCM. The positions of plasmonic resonances are marked by the dotted lines.

Fig. 3
Fig. 3

(a-d) SP field distributions of PAM with P = 500 μm at frequencies of (a) 0.6, (b) 0.848, (c) 1.2, and (d) 1.34 THz. Corresponding electric field distributions of eight-fold QCM under frequencies of (e) 0.43, (f) 0.57, (g) 0.73, and (h) 1.02 THz.

Fig. 4
Fig. 4

(a) and (d) Simulated (solid lines) and measured (dashed lines) transmission resonances of PAM and eight-fold QCM for varied slit sizes: a = 60 μm, b = 150μm (red) and a = 200μm, b = 200μm (navy). (b) and (c) Corresponding plasmonic resonances of PAM. (e) and (f) Corresponding plasmonic resonances of eight-fold QCM.

Fig. 5
Fig. 5

(a) and (e) Schematics of 10 and 12-fold rotationally symmetric QCMs with slits patterned on metallic films. The individual slit sizes were 80 μm (width) and 200 μm (length). Inset of a) and e): reciprocal spaces of 10 and 12-fold QCMs calculated by 2D FFT. (b) and (f) Simulated (solid lines) and measured (dashed lines) transmission resonances of 10- and 12-fold QCM under varied grating constants: 750 μm (red), and 1000 μm (navy). (c-d) and (g-h) Corresponding plasmonic resonances of 10 and 12-fold QCMs, respectively. The colors are consistent with these of dots.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K sp = G i =m G x +n G y ,
f i /c = | G i |/ 2π ,

Metrics