Abstract

A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broad-band and high-efficiency polarization converters around 1550 nm based on composite structures

Xiong-Jun Shang, Xiang Zhai, Jing Yue, Xin Luo, Jian-Ping Liu, Xu-Peng Zhu, Hui-Gao Duan, and Ling-Ling Wang
Opt. Express 25(13) 14406-14413 (2017)

Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator

Linbo Zhang, Peiheng Zhou, Haipeng Lu, Li Zhang, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 6(4) 1393-1404 (2016)

Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials

Rui Xia, Xufeng Jing, Xincui Gui, Ying Tian, and Zhi Hong
Opt. Mater. Express 7(3) 977-988 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).
  2. T. Wilson, F. Massoumian, and R. Juskaitis, “Generation and focusing of radially polarized electric fields,” Opt. Eng. 42(11), 3088–3089 (2003).
    [Crossref]
  3. J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
    [Crossref]
  4. C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
    [Crossref]
  5. S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
    [Crossref]
  6. M. Lorente-Crespo, G. C. Ballesteros, and C. Mateo-Segura, “Transparent all-dielectric gradient index waveplates with compact profiles,” Appl. Phys. Lett. 109(11), 111105 (2016).
    [Crossref]
  7. H. Jiang, W. Zhao, and Y. Jiang, “All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface,” Opt. Express 24(16), 17738–17745 (2016).
    [Crossref] [PubMed]
  8. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  9. K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
    [Crossref] [PubMed]
  10. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
    [Crossref] [PubMed]
  11. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
    [Crossref] [PubMed]
  12. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  13. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [Crossref] [PubMed]
  14. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
    [Crossref]
  15. J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
    [Crossref]
  16. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
    [Crossref] [PubMed]
  17. A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett. 36(9), 1626–1628 (2011).
    [Crossref] [PubMed]
  18. X. J. Shang, X. Zhai, J. Yue, X. Luo, J. P. Liu, X. P. Zhu, H. G. Duan, and L. L. Wang, “Broad-band and high-efficiency polarization converters around 1550 nm based on composite structures,” Opt. Express 25(13), 14406–14413 (2017).
    [Crossref] [PubMed]
  19. X. Hu and X. Wei, “High efficiency broadband -90° to 90° arbitrary optical rotation realized with meta reflectarray,” Opt. Express 25(5), 5641–5650 (2017).
    [Crossref] [PubMed]
  20. P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
    [Crossref]
  21. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
    [Crossref]
  22. A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
    [Crossref] [PubMed]
  23. R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
    [Crossref] [PubMed]
  24. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
    [Crossref]
  25. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
    [Crossref] [PubMed]
  26. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(7), 2155 (2013).
    [Crossref] [PubMed]
  27. R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
    [Crossref]
  28. Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
    [Crossref]
  29. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
    [Crossref] [PubMed]
  30. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36(13), 2498–2500 (2011).
    [Crossref] [PubMed]
  31. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  32. H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
    [Crossref]
  33. B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
    [Crossref]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. X. Hu and X. Wei, “Metallic metasurface for high efficiency optical phase control in transmission mode,” Opt. Express 25(13), 15208–15215 (2017).
    [Crossref] [PubMed]
  36. M. Pelten, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
    [Crossref]

2017 (4)

2016 (8)

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

M. Lorente-Crespo, G. C. Ballesteros, and C. Mateo-Segura, “Transparent all-dielectric gradient index waveplates with compact profiles,” Appl. Phys. Lett. 109(11), 111105 (2016).
[Crossref]

H. Jiang, W. Zhao, and Y. Jiang, “All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface,” Opt. Express 24(16), 17738–17745 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

2015 (5)

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

2014 (4)

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

2013 (2)

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(7), 2155 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

2012 (2)

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

2008 (3)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

M. Pelten, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

2003 (2)

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

T. Wilson, F. Massoumian, and R. Juskaitis, “Generation and focusing of radially polarized electric fields,” Opt. Eng. 42(11), 3088–3089 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Aizpurua, J.

M. Pelten, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Albrektsen, O.

Alu, A.

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Ballesteros, G. C.

M. Lorente-Crespo, G. C. Ballesteros, and C. Mateo-Segura, “Transparent all-dielectric gradient index waveplates with compact profiles,” Appl. Phys. Lett. 109(11), 111105 (2016).
[Crossref]

Bardou, N.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Bouchon, P.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Bozhevolnyi, S. I.

Brener, I.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Bryant, G.

M. Pelten, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Caldwell, R. L.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

Campione, S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Chen, H. T.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Chen, S.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Chen, S. Q.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Chen, W. T.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X. L.

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Cheng, H.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Cheroske, A. G.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

Chong, K. E.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cronin, T. W.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

Crozier, K. B.

Da, X. Y.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Decker, M.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Della Valle, G.

Devlin, R. C.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ding, F.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Dominguez, J.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Duan, H. G.

Dupuis, C.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Fang, Y. W.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Gao, J.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Gu, C. Q.

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Gu, C. Z.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Guo, Z.

Guo, Z. Y.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Haïdar, R.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Hopkins, B.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Hu, X.

Huang, C. P.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

Jaeck, J.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

James, A.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Jiang, H.

Jiang, Y.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juskaitis, R.

T. Wilson, F. Massoumian, and R. Juskaitis, “Generation and focusing of radially polarized electric fields,” Opt. Eng. 42(11), 3088–3089 (2003).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Khoo, E. H.

Khorasaninejad, M.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Kivshar, Y. S.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Kravchenko, I. I.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Kruk, S.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Lévesque, Q.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Li, E. P.

Li, J. J.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Li, J. Q.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

Li, J. X.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Li, R.

Li, R. Z.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Li, W.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Li, Z.

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Li, Z. C.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Lin, B. Q.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Lin, L.

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Liu, J.

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

Liu, J. L.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Liu, J. P.

Liu, L. L.

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Liu, S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Liu, W.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Liu, Z.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Liu, Z. C.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Lorente-Crespo, M.

M. Lorente-Crespo, G. C. Ballesteros, and C. Mateo-Segura, “Transparent all-dielectric gradient index waveplates with compact profiles,” Appl. Phys. Lett. 109(11), 111105 (2016).
[Crossref]

Luk, T. S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Luo, X.

Makhsiyan, M.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Marshall, J.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

Martin, F.

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Massoumian, F.

T. Wilson, F. Massoumian, and R. Juskaitis, “Generation and focusing of radially polarized electric fields,” Opt. Eng. 42(11), 3088–3089 (2003).
[Crossref]

Mateo-Segura, C.

M. Lorente-Crespo, G. C. Ballesteros, and C. Mateo-Segura, “Transparent all-dielectric gradient index waveplates with compact profiles,” Appl. Phys. Lett. 109(11), 111105 (2016).
[Crossref]

Meng, W.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Miroshnichenko, A.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Neshev, D. N.

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Nielsen, M. G.

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Oh, J.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Pardo, F.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pelouard, J.-L.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pelten, M.

M. Pelten, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Pors, A.

Qu, S.

Qu, S. L.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Radko, I. P.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(7), 2155 (2013).
[Crossref] [PubMed]

Roberts, A.

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Shaltout, A.

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Shang, X. J.

Shashar, N.

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

Staude, I.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Subramania, G. S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Sun, H. Y.

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Tang, C. C.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Tian, J.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

Tian, J. G.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Wang, B. H.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Wang, F. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Wang, L. L.

Wang, Q. J.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Wang, W.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

Wang, Z.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Wei, X.

Willatzen, M.

Wilson, T.

T. Wilson, F. Massoumian, and R. Juskaitis, “Generation and focusing of radially polarized electric fields,” Opt. Eng. 42(11), 3088–3089 (2003).
[Crossref]

Yang, H. F.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Yang, J.

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

Yin, X. G.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Yu, P.

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Yue, J.

Zhai, X.

Zhang, A.

Zhang, A. J.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Zhang, J.

Zhang, J. R.

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Zhang, X.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Zhang, Y.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

Zhao, W.

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Zhu, X. P.

Zhu, Y. Y.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

Zhu, Z. H.

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

ACS Nano (1)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2014).
[Crossref]

Adv. Opt. Mater. (1)

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ Law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2015).
[Crossref]

APL Photonics (1)

S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited Article: Broadband highly efficient dielectric metadevices for polarization control,” APL Photonics 1(3), 030801 (2016).
[Crossref]

Appl. Phys. Lett. (4)

M. Lorente-Crespo, G. C. Ballesteros, and C. Mateo-Segura, “Transparent all-dielectric gradient index waveplates with compact profiles,” Appl. Phys. Lett. 109(11), 111105 (2016).
[Crossref]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Comp. Bio. (1)

T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, and A. G. Cheroske, Integr, “Polarization vision and its role in biological signaling,” Comp. Bio. 43(4), 549–558 (2003).

J. Appl. Phys. (2)

H. Y. Sun, C. Q. Gu, X. L. Chen, Z. Li, L. L. Liu, and F. Martin, “Ultra-wideband and broad-angle linear polarization conversion metasurface,” J. Appl. Phys. 121(17), 174902 (2017).
[Crossref]

B. Q. Lin, B. H. Wang, W. Meng, X. Y. Da, W. Li, Y. W. Fang, and Z. H. Zhu, “Dual-band high-efficiency polarization converter using an anisotropic metasurface,” J. Appl. Phys. 119(18), 205428 (2016).
[Crossref]

Laser Photonics Rev. (1)

M. Pelten, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photonics Rev. 2(3), 136–159 (2008).
[Crossref]

Light Sci. Appl. (1)

P. Yu, J. X. Li, C. C. Tang, H. Cheng, Z. C. Liu, Z. C. Li, Z. Liu, C. Z. Gu, J. J. Li, S. Q. Chen, and J. G. Tian, “Controllable optical activity with non-chiral plasmonic metasurfaces,” Light Sci. Appl. 5(7), e16096 (2016).
[Crossref]

Nano Lett. (5)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, “Optically active metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426–4431 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

T. Wilson, F. Massoumian, and R. Juskaitis, “Generation and focusing of radially polarized electric fields,” Opt. Eng. 42(11), 3088–3089 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (2)

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Plasmonics (2)

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics 6(2), 251–254 (2011).
[Crossref]

R. Z. Li, Z. Y. Guo, W. Wang, J. R. Zhang, A. J. Zhang, J. L. Liu, S. L. Qu, and J. Gao, “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics 10(5), 1167–1172 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A. 113(38), 10473–10478 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5(1), 18106 (2016).
[Crossref] [PubMed]

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3(7), 2155 (2013).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the plasmonic metasurfaces, which composed of cross-shaped Ag particle arrays embedded in silica. The thickness of Ag antenna is h = 380nm. The lattice constant of the antenna arrays is 600nm. (b) Top view of the unit cell of cross-shaped Ag nanoparticles. The geometric parameters are w = 100nm, Ly = 430nm, Lx = 345nm, respectively.

Fig. 2
Fig. 2

Spectral response, field and currentdistributions of the metasurface. (a) Transmittance of the metasurface. (b)-(c) Electric field component Ex distribution at 1200 nm. (d)-(e) Electric current distribution of the structure. (f)-(g) Magnetic field component Hx, and electric field component Ex distributions at 1430 nm, respectively.

Fig. 3
Fig. 3

Field and spectral response of the metasurface. (a)-(b) Electric field component Ey distribution at 1200 nm. (c)-(d) Magnetic field component Hy, and electric field component Ey distributions at 1430 nm, respectively.(e) The transmission spectrum as a function of structure parameter h.

Fig. 4
Fig. 4

(a) The linear transmissivities Tx - Ty and Tx + Ty, the phase difference between electric field components Ex and Ey for the designed quarter-wave plat. (b) The calculated ellipticity angle ζ and ellipticity χ.

Fig. 5
Fig. 5

(a) The linear transmissivities Tx - Ty and Tx + Ty, the phase difference between electric field components Ex and Ey for the designed half-wave plat. (b) The calculated PRA Ψ and DoLP η.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ζ = 1 2 arc sin 2 | E x | | E y | sin ( Δ φ ) | E x | 2 + | E y | 2 .
χ = | E x | | E y | .
ψ = 1 2 arc tan 2 | E x | | E y | cos ( Δ φ ) | E x | 2 | E y | 2 .
η = ( | E x | 2 | E y | 2 ) 2 + ( 2 | E x | | E y | cos ( Δ φ ) ) 2 | E x | 2 + | E y | 2 .

Metrics