Abstract

We demonstrate the implementation of a compact tunable-focus liquid lens suitable for adaptive eyeglass application. The lens has an aperture diameter of 32 mm, optical power range of 5.6 diopter, and electrical power consumption less than 20 mW. The lens inclusive of its piezoelectric actuation mechanism is 8.4 mm thick and weighs 14.4 gm. The measured lens RMS wavefront aberration error was between 0.73 µm and 0.956 µm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large aperture tunable-focus liquid lens using shape memory alloy spring

Nazmul Hasan, Hanseup Kim, and Carlos H. Mastrangelo
Opt. Express 24(12) 13334-13342 (2016)

Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications

Yi-Hsin Lin and Hung-Shan Chen
Opt. Express 21(8) 9428-9436 (2013)

Tunable-focus liquid lens controlled using a servo motor

Hongwen Ren, David Fox, P. Andrew Anderson, Benjamin Wu, and Shin-Tson Wu
Opt. Express 14(18) 8031-8036 (2006)

References

  • View by:
  • |
  • |
  • |

  1. W. Tasman and E. A. Jaeger, Duane's Ophthalmology (LLW, 2013).
  2. M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).
  3. S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).
  4. D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth- Heinemann, 2001).
  5. S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
    [Crossref] [PubMed]
  6. C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35(3), 226–235 (1990).
    [Crossref] [PubMed]
  7. L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
    [Crossref] [PubMed]
  8. S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50(11), 1760–1766 (2002).
    [Crossref] [PubMed]
  9. T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19(1), 25–33 (2006).
    [PubMed]
  10. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  11. H. Jiang and X. Zeng, Microlenses: Properties, Fabrication and Liquid Lenses (CRC Press, 2013).
  12. L. Alvarez, “Two-element variable power spherical lens,” U.S. Patent Application 3305294 (1967).
  13. L. W. Alvarez, “Development of variable- focus lenses and a new refractor,” J. Am. Optom. Assoc. 49(1), 24–29 (1978).
    [PubMed]
  14. O. Aves, “Improvements in and relating to multifocal lenses and the like, and the method of grinding same,” GB patent no. 15735 (1908).
  15. C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).
  16. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  17. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
    [Crossref]
  18. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
    [Crossref] [PubMed]
  19. M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion implanted EAPs,” Proc. SPIE 7642, 76422K (2010).
    [Crossref]
  20. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
    [Crossref] [PubMed]
  21. H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [Crossref]
  22. N. Peyghambarian, G. Li, and P. Ayras, “Adaptive electro-active lens with variable focal length,” U.S. patent application 0164593 (2006).
  23. C. W. Fowler and E. S. Pateras, “Liquid crystal lens review,” Ophthalmic Physiol. Opt. 10(2), 186–194 (1990).
    [Crossref] [PubMed]
  24. A. Naumov, G. Love, M. Yu. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [Crossref] [PubMed]
  25. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  26. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
    [Crossref]
  27. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  28. Fresnel Technologies Inc, “Fresnel lenses brochure,” (2003) http:// www.fresneltech.com/pdf/FresnelLenses.pdf
  29. H. Ren, Y. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [Crossref]
  30. S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(8), 626–628 (1985).
    [Crossref]
  31. Edmund Optics, “Fresnel lenses,” http://www.edmundoptics.com/optics/optical-lenses/fresnel-lenses/2040/
  32. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
    [Crossref]
  33. E. H. Mansfield, The Bending and Stretching of Plates (Cambridge University, 1989).
  34. D. Armani, C. Liu, and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” in Proceedings of Twelfth IEEE Conference on MEMS (IEEE, 1999).
    [Crossref]
  35. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
    [Crossref] [PubMed]
  36. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [Crossref] [PubMed]
  37. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
    [Crossref] [PubMed]
  38. M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8(4), 529–533 (1999).
    [Crossref]
  39. S. Pal and H. Xie, “Analysis and simulation of curved bimorph microactuators,” Proc. NSTI-Nanotech2, 685–688 (2010).
  40. S. A. Rios and A. J. Fleming, “A new electrical configuration for improving the range of piezoelectric bimorph benders,” Sens. Actuators A Phys. 224, 106–110 (2015).
    [Crossref]
  41. Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
    [Crossref] [PubMed]
  42. D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
    [Crossref]
  43. C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
    [Crossref] [PubMed]
  44. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

S. A. Rios and A. J. Fleming, “A new electrical configuration for improving the range of piezoelectric bimorph benders,” Sens. Actuators A Phys. 224, 106–110 (2015).
[Crossref]

2013 (2)

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
[Crossref] [PubMed]

2012 (1)

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

2011 (3)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

2010 (1)

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion implanted EAPs,” Proc. SPIE 7642, 76422K (2010).
[Crossref]

2009 (1)

2008 (2)

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
[Crossref] [PubMed]

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
[Crossref] [PubMed]

2007 (2)

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
[Crossref] [PubMed]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

2006 (3)

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19(1), 25–33 (2006).
[PubMed]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

2005 (1)

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

2004 (1)

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

2003 (1)

H. Ren, Y. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

2002 (1)

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50(11), 1760–1766 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (3)

M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8(4), 529–533 (1999).
[Crossref]

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

A. Naumov, G. Love, M. Yu. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
[Crossref] [PubMed]

1993 (1)

1990 (2)

C. W. Fowler and E. S. Pateras, “Liquid crystal lens review,” Ophthalmic Physiol. Opt. 10(2), 186–194 (1990).
[Crossref] [PubMed]

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35(3), 226–235 (1990).
[Crossref] [PubMed]

1985 (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(8), 626–628 (1985).
[Crossref]

1978 (1)

L. W. Alvarez, “Development of variable- focus lenses and a new refractor,” J. Am. Optom. Assoc. 49(1), 24–29 (1978).
[PubMed]

Allbritton, N. L.

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Aluru, N.

D. Armani, C. Liu, and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” in Proceedings of Twelfth IEEE Conference on MEMS (IEEE, 1999).
[Crossref]

Alvarez, L. W.

L. W. Alvarez, “Development of variable- focus lenses and a new refractor,” J. Am. Optom. Assoc. 49(1), 24–29 (1978).
[PubMed]

Anderson, P. A.

Armani, D.

D. Armani, C. Liu, and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” in Proceedings of Twelfth IEEE Conference on MEMS (IEEE, 1999).
[Crossref]

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Balowski, J.

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Buckley, J. G.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
[Crossref] [PubMed]

Callina, T.

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19(1), 25–33 (2006).
[PubMed]

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Chang, F.-C.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Chen, J.-K.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Chiang, T.-J.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Chiu, C.-P.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Christian, W.

Chu, C.-W.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Clarke, D. R.

Copland, R. J.

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

Cox, I. G.

Dayhew, J.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50(11), 1760–1766 (2002).
[Crossref] [PubMed]

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Diebold, R. M.

Draheim, J.

Eliceiri, K.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Elliott, D. B.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
[Crossref] [PubMed]

Fan, S.-K.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Fan, Y.

H. Ren, Y. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Fleming, A. J.

S. A. Rios and A. J. Fleming, “A new electrical configuration for improving the range of piezoelectric bimorph benders,” Sens. Actuators A Phys. 224, 106–110 (2015).
[Crossref]

Fowler, C. W.

C. W. Fowler and E. S. Pateras, “Liquid crystal lens review,” Ophthalmic Physiol. Opt. 10(2), 186–194 (1990).
[Crossref] [PubMed]

Fox, D.

Fox, D. W.

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Guirao, A.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hall, G.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Hasan, N.

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Howland, A.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50(11), 1760–1766 (2002).
[Crossref] [PubMed]

Ishikawa, M.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Jiang, H.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Johnson, L.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
[Crossref] [PubMed]

Kamberger, R.

Kim, H.

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Ko, F.-H.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Kobrin, P.

Kuo, S.-W.

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

Letocha, C. E.

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35(3), 226–235 (1990).
[Crossref] [PubMed]

Li, C.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Liu, C.

D. Armani, C. Liu, and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” in Proceedings of Twelfth IEEE Conference on MEMS (IEEE, 1999).
[Crossref]

Loktev, M. Yu.

Lord, S. R.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50(11), 1760–1766 (2002).
[Crossref] [PubMed]

Love, G.

Mariotti, S. P.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
[Crossref] [PubMed]

Mastrangelo, C. H.

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Morita, S.

Narayanaswamy, S.

Naumov, A.

Neal, D. A.

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

Neal, D. R.

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

Niklaus, M.

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion implanted EAPs,” Proc. SPIE 7642, 76422K (2010).
[Crossref]

Oku, H.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Pal, S.

S. Pal and H. Xie, “Analysis and simulation of curved bimorph microactuators,” Proc. NSTI-Nanotech2, 685–688 (2010).

Pascolini, D.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
[Crossref] [PubMed]

Pateras, E. S.

C. W. Fowler and E. S. Pateras, “Liquid crystal lens review,” Ophthalmic Physiol. Opt. 10(2), 186–194 (1990).
[Crossref] [PubMed]

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Phillips, C.

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Phillips, R.

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Pokharel, G. P.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
[Crossref] [PubMed]

Porter, J.

Ren, H.

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

H. Ren, Y. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Resnikoff, S.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
[Crossref] [PubMed]

Reynolds, T. P.

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19(1), 25–33 (2006).
[PubMed]

Riera, P.

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

Rios, S. A.

S. A. Rios and A. J. Fleming, “A new electrical configuration for improving the range of piezoelectric bimorph benders,” Sens. Actuators A Phys. 224, 106–110 (2015).
[Crossref]

Rosset, S.

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion implanted EAPs,” Proc. SPIE 7642, 76422K (2010).
[Crossref]

Sato, R.

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(8), 626–628 (1985).
[Crossref]

Sato, S.

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(8), 626–628 (1985).
[Crossref]

Scally, A. J.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
[Crossref] [PubMed]

Schneider, F.

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Seabury, C.

Shea, H.

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion implanted EAPs,” Proc. SPIE 7642, 76422K (2010).
[Crossref]

Shian, S.

Sims, C. E.

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Sugiura, N.

Sugiyama, A.

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(8), 626–628 (1985).
[Crossref]

Topa, D. M.

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Vladimirov, F.

Waibel, P.

Wallrabe, U.

Wang, L.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Wang, Y.

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Weinberg, M. S.

M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8(4), 529–533 (1999).
[Crossref]

Williams, D. R.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Wu, B.

Wu, S.-T.

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

H. Ren, Y. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

Xie, H.

S. Pal and H. Xie, “Analysis and simulation of curved bimorph microactuators,” Proc. NSTI-Nanotech2, 685–688 (2010).

Yang, Q.

Zeng, X.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Zhu, D.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

H. Ren, Y. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[Crossref]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Bull. World Health Organ. (1)

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86(1), 63–70 (2008).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48(4), 1466–1471 (2007).
[Crossref] [PubMed]

J. Adhes. Sci. Technol. (1)

C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, and S.-K. Fan, “Liquid lenses and driving mechanisms: A review,” J. Adhes. Sci. Technol. 26(12), 1773–1788 (2012).

J. Am. Geriatr. Soc. (1)

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50(11), 1760–1766 (2002).
[Crossref] [PubMed]

J. Am. Optom. Assoc. (1)

L. W. Alvarez, “Development of variable- focus lenses and a new refractor,” J. Am. Optom. Assoc. 49(1), 24–29 (1978).
[PubMed]

J. Microelectromech. Syst. (1)

M. S. Weinberg, “Working equations for piezoelectric actuators and sensors,” J. Microelectromech. Syst. 8(4), 529–533 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal fresnel lens,” Jpn. J. Appl. Phys. 24(8), 626–628 (1985).
[Crossref]

Lab Chip (1)

Y. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, “Benchtop micromolding of polystyrene by soft lithography,” Lab Chip 11(18), 3089–3097 (2011).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

C. W. Fowler and E. S. Pateras, “Liquid crystal lens review,” Ophthalmic Physiol. Opt. 10(2), 186–194 (1990).
[Crossref] [PubMed]

Ophthalmol. Clin. North Am. (1)

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19(1), 25–33 (2006).
[PubMed]

Opt. Express (6)

Opt. Rev. (1)

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Proc. SPIE (2)

D. R. Neal, R. J. Copland, D. A. Neal, D. M. Topa, and P. Riera, “Measurement of lens focal length using multicurvature analysis of Shack-Hartmann wavefront data,” Proc. SPIE 5523, 243–255 (2004).
[Crossref]

M. Niklaus, S. Rosset, and H. Shea, “Array of lenses with individually tunable focal-length based on transparent ion implanted EAPs,” Proc. SPIE 7642, 76422K (2010).
[Crossref]

Sens. Actuators A Phys. (1)

S. A. Rios and A. J. Fleming, “A new electrical configuration for improving the range of piezoelectric bimorph benders,” Sens. Actuators A Phys. 224, 106–110 (2015).
[Crossref]

Surv. Ophthalmol. (1)

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35(3), 226–235 (1990).
[Crossref] [PubMed]

Other (14)

O. Aves, “Improvements in and relating to multifocal lenses and the like, and the method of grinding same,” GB patent no. 15735 (1908).

N. Peyghambarian, G. Li, and P. Ayras, “Adaptive electro-active lens with variable focal length,” U.S. patent application 0164593 (2006).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

H. Jiang and X. Zeng, Microlenses: Properties, Fabrication and Liquid Lenses (CRC Press, 2013).

L. Alvarez, “Two-element variable power spherical lens,” U.S. Patent Application 3305294 (1967).

W. Tasman and E. A. Jaeger, Duane's Ophthalmology (LLW, 2013).

M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).

S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth- Heinemann, 2001).

S. Pal and H. Xie, “Analysis and simulation of curved bimorph microactuators,” Proc. NSTI-Nanotech2, 685–688 (2010).

Fresnel Technologies Inc, “Fresnel lenses brochure,” (2003) http:// www.fresneltech.com/pdf/FresnelLenses.pdf

Edmund Optics, “Fresnel lenses,” http://www.edmundoptics.com/optics/optical-lenses/fresnel-lenses/2040/

E. H. Mansfield, The Bending and Stretching of Plates (Cambridge University, 1989).

D. Armani, C. Liu, and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” in Proceedings of Twelfth IEEE Conference on MEMS (IEEE, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified schematic of soft membrane liquid lens excluding actuators. The lens optical power, Popt is adjusted by vertically displacing the fluid, deflecting the top membrane thus changing its curvature.

Fig. 2
Fig. 2

A circular diaphragm under uniform tension, T and pressure, qo forms approximately a spherical cap.

Fig. 3
Fig. 3

Schematic of the bimorphs actuating the bossed membrane lens (left) and photo of the actual device (Right).

Fig. 4
Fig. 4

Deflection of a curved bimorph. Since the outer edge is longer than the inner one, this type of actuator not only bends but also rotates at its tip.

Fig. 5
Fig. 5

(a) Proximity technique for lens focal length measurement and (b) 4f optical setup for lens aberration measurement.

Fig. 6
Fig. 6

Lens optical power (at the lens center) as a function of voltage. The standard deviations of lens power are below 1.3%.

Fig. 7
Fig. 7

Target object photos taken through the VFL lens at (a) −1.2 diopter (b) + 3 diopter.

Fig. 8
Fig. 8

(left) Lens electrical power consumption (at 160 V) as a function of switching frequency and (right) lens actuators’ mechanical displacement as a function of frequency.

Tables (2)

Tables Icon

Table 1 Curved Bimorph Characteristics.

Tables Icon

Table 2 Lens Aberrations at different optical power.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

D. 4 u o T. 2 u o = q o .
D= E t t 3 12(1 μ 2 ) , T= ε i E t t ,
u o = q o r t 2 4T ( (1 ρ 2 )+ 2 β I 1 (β) ( I 0 (βρ) I 0 (β)) ),
h= u o (0)= q o r t 2 4.T ( 1+ 2(1 I 0 (β)) β ).
(Rh) 2 + r t 2 = R 2 .
P opt ( q o )= (n1) R 2h(n1) r t 2 = q o 2T (n1)( 1+ 2(1 I 0 (β)) β I 1 (β) ).
Δ V front ( q o )= 1 6 πh(3 r t 2 + h 2 ) 1 2 πh r t 2 .
Δ V back ( q o ) 1 2 π d p ( r b 2 + r p 2 )=Δ V front ( q o ) 1 2 πh r t 2 h ( r b 2 + r p 2 ) r t 2 d p ,
k p = F d p 4πT r b 2 ( r b 2 + r p 2 ) r t 4 1 ( 1+ 2(1 I 0 (β)) β I 1 (β) ) .
P opt ( d p )2(n1) ( r b 2 + r p 2 ) r t 4 d p .
V liquid π r t 2 P max 2(n1) .
u h = ρ o g r t 3 (1 ρ 2 )cos(θ) 8T ( 1 2( I 1 (β) I 2 (ρβ)) β(1 ρ 2 ) I 2 (β) )
P opt y | r=0 ρ o g 2T (n1)( 1 β 2 8 I 2 (β) ).
U(R,s)= M b R 2 E b I b (1cos( s R )), φ(s)= U(s) R ,
M b = w b E b d 31 t b V b ,
P opt 2(n1)U(R,s)( r b 2 + r p 2 ) r t 4 (1+ k p 3 k b ) .

Metrics