Abstract

Since the quality of underwater classical optical imaging is constrained by the absorptive and scattering nature for underwater environment, it is a challenging task to obtain long distance imaging. Ghost imaging is a second-order correlation imaging method using co-incidence measurement, which has the advantages of disturbance-free and wider angle of view (AOV), which can effectively improve the imaging result. We have investigated the computational ghost imaging under the underwater conditions for different turbidities and from different angles. The reconstruction obtained by computational ghost imaging can be rather desirable, in the scenarios that the classical optical imaging method completely fails. Moreover, the underwater computational ghost imaging can bear a wide range of AOV, where the obtained imaging results can be satisfiable in regardless of the detector’s locations. This result brings a better alternative for underwater optical imaging.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible ghost imaging with nonvisible light

Deyang Duan, Lu Zhang, and Yunjie Xia
J. Opt. Soc. Am. A 31(4) 730-733 (2014)

High quality computational ghost imaging using multi-fluorescent screen

Hossein Ghanbari-Ghalehjoughi, Sohrab Ahmadi-Kandjani, and Mansour Eslami
J. Opt. Soc. Am. A 32(2) 323-328 (2015)

Object reconstitution using pseudo-inverse for ghost imaging

Chi Zhang, Shuxu Guo, Junsheng Cao, Jian Guan, and Fengli Gao
Opt. Express 22(24) 30063-30073 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref] [PubMed]
  2. R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1912–1917 (2008).
    [Crossref]
  3. Y. Shih, The Physics of Ghost Imaging (Springer, 2012).
  4. D. Magatti, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Optic. 53, 739–760 (2006).
    [Crossref]
  5. P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).
  6. A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 1532 (2010).
    [Crossref]
  7. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
    [Crossref]
  8. B. Dixon, “Quantum ghost imaging through turbulence,” Physical Review A 83, 911–915 (2011).
    [Crossref]
  9. W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36, 394–396 (2011).
    [Crossref] [PubMed]
  10. M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).
  11. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref] [PubMed]
  12. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
    [Crossref]
  13. A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
    [Crossref]
  14. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [Crossref] [PubMed]
  15. Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 122–133 (2005).
    [Crossref]
  16. V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref]
  17. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref] [PubMed]
  18. L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
    [Crossref]
  19. L. Basano and P. Ottonello, “A conceptual experiment on single-beam coincidence detection with pseudothermal light,” Opt. Express 15, 12386–12394 (2007).
    [Crossref] [PubMed]
  20. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
    [Crossref] [PubMed]
  21. K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010).
    [Crossref] [PubMed]
  22. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–2 (2009).
  23. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2009).
    [Crossref]
  24. H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
    [Crossref]
  25. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
    [Crossref] [PubMed]
  26. C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
    [Crossref]
  27. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
    [Crossref]
  28. W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
    [Crossref]
  29. W. L. Gong and S. S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
    [Crossref] [PubMed]
  30. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131119 (2009).
    [Crossref]
  31. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref] [PubMed]
  32. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
    [Crossref]
  33. D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
    [Crossref]
  34. R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

2016 (5)

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

2015 (1)

W. L. Gong and S. S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

2012 (2)

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

2011 (3)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

B. Dixon, “Quantum ghost imaging through turbulence,” Physical Review A 83, 911–915 (2011).
[Crossref]

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36, 394–396 (2011).
[Crossref] [PubMed]

2010 (3)

P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 1532 (2010).
[Crossref]

K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010).
[Crossref] [PubMed]

2009 (4)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–2 (2009).

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131119 (2009).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
[Crossref] [PubMed]

2008 (1)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1912–1917 (2008).
[Crossref]

2007 (1)

2006 (2)

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

D. Magatti, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Optic. 53, 739–760 (2006).
[Crossref]

2005 (3)

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 122–133 (2005).
[Crossref]

V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

2004 (3)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref] [PubMed]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Alejandra, V.

V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
[Crossref]

Baldwin, K. G. H.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Basano, L.

L. Basano and P. Ottonello, “A conceptual experiment on single-beam coincidence detection with pseudothermal light,” Opt. Express 15, 12386–12394 (2007).
[Crossref] [PubMed]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref] [PubMed]

Bina, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Boyd, R. W.

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 1532 (2010).
[Crossref]

K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18, 5562–5573 (2010).
[Crossref] [PubMed]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34, 3343–3345 (2009).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref] [PubMed]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
[Crossref]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131119 (2009).
[Crossref]

Cai, Y.

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 122–133 (2005).
[Crossref]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Chan, K. W.

Chan, K. W. C.

Chen, M. L.

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Dall, R. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1912–1917 (2008).
[Crossref]

Dixon, B.

B. Dixon, “Quantum ghost imaging through turbulence,” Physical Review A 83, 911–915 (2011).
[Crossref]

Du, G. H.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Edgar, M. P.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Ferri, F.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Gatti, A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
[Crossref]

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Giuliano, S.

V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Gong, W.

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36, 394–396 (2011).
[Crossref] [PubMed]

P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).

Gong, W. L.

W. L. Gong and S. S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Goyal, V. K

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Han, S.

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36, 394–396 (2011).
[Crossref] [PubMed]

P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).

Han, S. S.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

W. L. Gong and S. S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Henson, B. M.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Hodgman, S. S.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
[Crossref]

Jha, A. K.

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 1532 (2010).
[Crossref]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131119 (2009).
[Crossref]

Khakimov, R. I.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

Lan, R. M.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Li, E. R.

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Liu, X. F.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Lu, R. H.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Lugiato, L.

A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
[Crossref]

Lugiato, L. A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

Lussana, R.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Magatti, D.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

D. Magatti, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Optic. 53, 739–760 (2006).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1912–1917 (2008).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

Milena, D.

V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Mitchell, K. J.

Molteni, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

O’Sullivan, M. N.

Ottonello, P.

L. Basano and P. Ottonello, “A conceptual experiment on single-beam coincidence detection with pseudothermal light,” Opt. Express 15, 12386–12394 (2007).
[Crossref] [PubMed]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

Padgett, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Paganin, D. M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Pelliccia, D.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Rack, A.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–2 (2009).

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1912–1917 (2008).
[Crossref]

Y. Shih, The Physics of Ghost Imaging (Springer, 2012).

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Shin, D.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Shin, D. K.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131119 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2009).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Sun, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

Truscott, A. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Tyler, G. A.

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 1532 (2010).
[Crossref]

Venkatraman, D.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Villa, F.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Wang, H.

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Wong, F. N. C.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Wu, L. A.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Xia, S.

P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).

Xiao, T. Q.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Xie, H. L.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Xu, F. H.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Xu, W. D.

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Yanhua, S.

V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Yao, X. R.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Yu, H.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Yu, W. K.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Zappa, F.

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Zhai, G. J.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Zhang, P.

P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).

Zhao, C. Q.

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zhao, Q.

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Zhu, D. M.

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

Zhu, S. Y.

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 122–133 (2005).
[Crossref]

Appl. Phys. Lett. (4)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011).
[Crossref]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).
[Crossref]

C. Q. Zhao, W. L. Gong, M. L. Chen, E. R. Li, H. Wang, W. D. Xu, and S. S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131119 (2009).
[Crossref]

J. Mod. Optic. (1)

D. Magatti, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Optic. 53, 739–760 (2006).
[Crossref]

Nature Commun. (2)

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nature Commun. 7, 12010 (2016).
[Crossref]

D. Shin, F. H. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nature Commun. 7, 12046 (2016).
[Crossref]

Opt. Commun. (1)

W. K. Yu, X. R. Yao, X. F. Liu, R. M. Lan, L. A. Wu, G. J. Zhai, and Q. Zhao, “Compressive microscopic imaging with ‘positive-negative’ light modulation,” Opt. Commun. 371, 105–111 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (7)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 1–2 (2009).

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 1744–1747 (2009).
[Crossref]

P. Zhang, W. Gong, S. Xia, and S. Han, “Correlated imaging through atmospheric turbulence,” Phys. Rev. A 82, 5183–5191 (2010).

A. K. Jha, G. A. Tyler, and R. W. Boyd, “Effects of atmospheric turbulence on the entanglement of spatial two-qubit states,” Phys. Rev. A 81, 1532 (2010).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref] [PubMed]

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 1912–1917 (2008).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 235–238 (2004).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 122–133 (2005).
[Crossref]

Phys. Rev. Lett. (8)

V. Alejandra, S. Giuliano, D. Milena, and S. Yanhua, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref] [PubMed]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 1–7 (2012).

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 069901 (2004).
[Crossref]

H. Yu, R. H. Lu, S. S. Han, H. L. Xie, G. H. Du, T. Q. Xiao, and D. M. Zhu, “Fourier-transform ghost imaging with hard X-rays,” Phys. Rev. Lett. 117, 113901 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117, 113902 (2016).
[Crossref] [PubMed]

Physical Review A (1)

B. Dixon, “Quantum ghost imaging through turbulence,” Physical Review A 83, 911–915 (2011).
[Crossref]

Sci. Rep. (1)

W. L. Gong and S. S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Other (2)

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost Imaging with Atoms,” arXiv:1607.02240v1 (2016).

Y. Shih, The Physics of Ghost Imaging (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The computational ghost imaging setup. DMD: Digital Micromirror Device, CFP: Calculated Filed Pattern, BD: Bucket Detector.

Fig. 2
Fig. 2

Experimental setup for underwater computational ghost imaging with object placed on different positions (A, B and C).

Fig. 3
Fig. 3

Simulation analysis imaging results of the setup with object on position A, position B and position C.

Fig. 4
Fig. 4

Experimental imaging results of the setup with object on position A, position B and position C. NTU: the unit of turbidity, fs: frames.

Fig. 5
Fig. 5

(a) The actual CFPs with different turbidity captured with CCD. (a1), (a2), (a3) and (a4) are the contours of CFPs with 0NTU, 40NTU, 85NTU, and 90NTU, respectively. (b) The plots of the light power attenuation of CFPs and water sample attenuation coefficient with different turbidity. (c) The plot of correlation coefficient of CFPs with different turbidities.

Fig. 6
Fig. 6

(a) The plot of SNR with different turbidities (CGI vs. CCD) with sampling of 3000 frames. (b) The plot of SNR with different turbidities (0 NTU/40 NTU/85 NTU/90 NTU) with respect to number of sampling.

Fig. 7
Fig. 7

(a) Experimental setups for underwater CGI from different view angles. (b) Principle of BD. (c) Principle of CCD. BD: Bucket Detector.

Fig. 8
Fig. 8

(a) The different angles’ light power curve with light source on left 20 degrees from its initial position. (b) The different angles’ light power curve with light source on right 20 degrees from its initial position. (c) The different angles’ light power curve with light source on its initial position and the plot of SNR of 0 degree with different angles with sampling number of 30000. (d) The plot of SNR with different angles with respect to number of sampling with light source on its initial position. (1)–(8) : Angles from 10 to 80 degree respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E L ( ρ L , t ) = E ( ρ 0 , t ) t i L λ e i k L d ρ 0 ,
I 1 ( ρ L , t ) = | E L ( ρ L , t ) | 2 ,
I 2 ( t ) =   A 1 | E L ( ρ L , t ) | 2 | T ( ρ ) | 2 d ρ ,
C ( ρ L ) = I 1 ( ρ L , t ) I 2 ( t ) = q 2 η 2 A 2 ( 2 P π a L 2 ) 2   A 1 e   | ρ L ρ 0 | 2 / ρ l 2 | T ( ρ ) | 2 d ρ ,
[ I 2 ( t 1 ) I 2 ( t 2 ) I 2 ( t M ) ] = [ I 1 ( t 1 , ρ 1 ) I 1 ( t 1 , ρ 2 ) I 1 ( t 1 , ρ Q ) I 1 ( t 2 , ρ 1 ) I 1 ( t 2 , ρ 2 ) I 1 ( t 2 , ρ Q )     I 1 ( t M , ρ 1 ) I 1 ( t M , ρ 2 ) I 1 ( t M , ρ Q ) ] [ O ( ρ 1 ) O ( ρ 2 ) O ( ρ Q ) ] + [ n ( t 1 ) n ( t 2 ) n ( t M ) ] ,

Metrics