Abstract

In this paper, we propose adaptively loaded set-partitioned offset quadrature amplitude modulation (SP-offset-QAM) orthogonal frequency division multiplexing (OFDM) for low-cost intensity-modulation direct-detection (IM/DD) communication systems. We compare this scheme with multi-band carrier-less amplitude phase modulation (CAP) and conventional OFDM, and demonstrate >40 Gbit/s transmission over 50-km single-mode fiber. It is shown that the use of SP-QAM formats, together with the adaptive loading algorithm specifically designed to this group of formats, results in significant performance improvement for all these three schemes. SP-offset-QAM OFDM exhibits greatly reduced complexity compared to SP-QAM based multi-band CAP, via parallelized implementation and minimized memory length for spectral shaping. On the other hand, this scheme shows better performance than SP-QAM based conventional OFDM at both back-to-back and after transmission. We also characterize the proposed scheme in terms of enhanced tolerance to fiber intra-channel nonlinearity and the potential to increase the communication security. The studies show that adaptive SP-offset-QAM OFDM is a promising IM/DD solution for medium- and long-reach optical access networks and data center connections.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats

Jian Zhao and Lian-Kuan Chen
Opt. Express 25(8) 9368-9377 (2017)

DC-Biased Optical OFDM for IM/DD Passive Optical Network Systems

M. F. Sanya, L. Djogbe, A. Vianou, and C. Aupetit-Berthelemot
J. Opt. Commun. Netw. 7(4) 205-214 (2015)

DFT-based offset-QAM OFDM for optical communications

Jian Zhao
Opt. Express 22(1) 1114-1126 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
    [Crossref] [PubMed]
  2. X. Ouyang, W. Jia, P. Gunning, P. D. Townsend, and J. Zhao, “Experimental demonstration and field-trial of an improved optical fast OFDM scheme using intensity modulation and full-field detection,” J. Lightwave Technol. 33(20), 4353–4359 (2015).
    [Crossref]
  3. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  4. E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
    [Crossref]
  5. F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, “Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser,” Opt. Express 22(7), 8742–8748 (2014).
    [Crossref] [PubMed]
  6. Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
    [Crossref]
  7. I. Djordjevic, H. G. Batshon, L. Xu, and T. Wang, “Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission,” Opt. Express 19(2), 876–882 (2011).
    [Crossref] [PubMed]
  8. H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” Optical Fiber Communication Conference (OFC, 2016), paper W1I.2.
    [Crossref]
  9. R. R. Muller, J. Renaudier, M. A. Mestre, H. Mardoyan, A. Konczykowska, F. Jorge, B. Duval, and J. Y. Dupuy, “Multi-dimension coded PAM4 signaling for 100Gb/s short reach transceivers,” Technical Digest of Optical Fiber Communication Conference (OFC, 2016), paper Th1G.4.
  10. J. Zhao and L. K. Chen, “Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats,” Opt. Express 25(8), 9368–9377 (2017).
    [Crossref] [PubMed]
  11. J. Zhao, “DFT-based offset-QAM OFDM for optical communications,” Opt. Express 22(1), 1114–1126 (2014).
    [Crossref] [PubMed]
  12. J. Zhao, “Channel estimation in DFT-based offset-QAM OFDM systems,” Opt. Express 22(21), 25651–25662 (2014).
    [Crossref] [PubMed]
  13. H. Tang, S. Fu, H. Liu, M. Tang, P. Shum, and D. Liu, “Low-complexity carrier phase recovery based on constellation classification for M-ary offset-QAM signal,” J. Lightwave Technol. 34(4), 1133–1140 (2016).
    [Crossref]
  14. T. H. Nguyen and C. Peucheret, “Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems,” IEEE Photonics Technol. Lett. 29(12), 1019–1022 (2017).
    [Crossref]
  15. A. Saljoghei, F. A. Gutierrez, P. Perry, D. Venkitesh, R. D. Koipillai, and L. P. Barry, “Experimental comparison of FBMC and OFDM for multiple access uplink PON,” J. Lightwave Technol. 35(9), 1595–1604 (2017).
    [Crossref]
  16. J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photonics Technol. Lett. 24(1), 34–36 (2012).
    [Crossref]
  17. E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
    [Crossref]
  18. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
    [Crossref]

2017 (3)

2016 (2)

H. Tang, S. Fu, H. Liu, M. Tang, P. Shum, and D. Liu, “Low-complexity carrier phase recovery based on constellation classification for M-ary offset-QAM signal,” J. Lightwave Technol. 34(4), 1133–1140 (2016).
[Crossref]

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

2015 (3)

2014 (3)

2012 (3)

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photonics Technol. Lett. 24(1), 34–36 (2012).
[Crossref]

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
[Crossref]

2011 (1)

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Alves, C.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Barry, L. P.

Batshon, H. G.

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Chen, H.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Chen, L.

Chen, L. K.

Chen, M.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Chen, W.

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Djordjevic, I.

Dong, Z.

Ellis, A. D.

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photonics Technol. Lett. 24(1), 34–36 (2012).
[Crossref]

Fang, Y.

Fu, S.

Gao, Y.

Giacoumidis, E.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
[Crossref]

Gosset, C.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Gui, T.

Gunning, P.

Gutierrez, F. A.

Hu, W.

Jaouen, Y.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Jia, W.

Kavatzikidis, A.

Koipillai, R. D.

Lau, A. P. T.

Li, F.

Li, X.

Li, Z.

Liu, D.

Liu, H.

Lu, C.

Man, J.

Mouchos, C.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Nguyen, T. H.

T. H. Nguyen and C. Peucheret, “Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems,” IEEE Photonics Technol. Lett. 29(12), 1019–1022 (2017).
[Crossref]

Ouyang, X.

Perry, P.

Peucheret, C.

T. H. Nguyen and C. Peucheret, “Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems,” IEEE Photonics Technol. Lett. 29(12), 1019–1022 (2017).
[Crossref]

Saljoghei, A.

Shum, P.

Tang, H.

Tang, J. M.

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
[Crossref]

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Tang, M.

Tao, L.

Tomkos, I.

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
[Crossref]

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Townsend, P. D.

Tsokanos, A.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
[Crossref]

Venkitesh, D.

Wang, T.

Wang, X.

Wei, J. L.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Xie, S.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Xu, L.

Yang, S.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Yi, L.

Yu, J.

Yu, Z.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Zardas, G.

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

Zeng, L.

Zhao, J.

Zhong, K.

Zhou, X.

IEEE J. Opt. Commun. Netw. (1)

E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparisons of optical fast OFDM and conventional optical OFDM for local and access networks,” IEEE J. Opt. Commun. Netw. 4(10), 724–733 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. H. Nguyen and C. Peucheret, “Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems,” IEEE Photonics Technol. Lett. 29(12), 1019–1022 (2017).
[Crossref]

J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photonics Technol. Lett. 24(1), 34–36 (2012).
[Crossref]

IEEE Trans. Commun. (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (7)

Other (2)

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” Optical Fiber Communication Conference (OFC, 2016), paper W1I.2.
[Crossref]

R. R. Muller, J. Renaudier, M. A. Mestre, H. Mardoyan, A. Konczykowska, F. Jorge, B. Duval, and J. Y. Dupuy, “Multi-dimension coded PAM4 signaling for 100Gb/s short reach transceivers,” Technical Digest of Optical Fiber Communication Conference (OFC, 2016), paper Th1G.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Principle of adaptively loaded SP-offset-QAM OFDM
Fig. 2
Fig. 2 Implementation setup of adaptively loaded SP-offset-QAM OFDM
Fig. 3
Fig. 3 Constellation points of SP-128QAM, which are divided into two subgroups represented by the solid and empty circles respectively.
Fig. 4
Fig. 4 Experimental setup
Fig. 5
Fig. 5 (a) BER performance versus signal data rate at back-to-back when the signal formats are offset-8QAM, offset-16QAM, adaptively loaded conventional offset-QAM, and adaptively loaded SP-offset-QAM. (b) BER versus signal data rate when the signals are SP-offset-QAM OFDM, SP-QAM based multi-band CAP, and conventional multi-band CAP.
Fig. 6
Fig. 6 (a) BER performance versus the roll-off factor of the signal spectrum for SP-offset-QAM OFDM and SP-QAM based multi-band CAP at 40 Gbit/s. (b) Performance versus the memory length of the FIR filters at 40 Gbit/s. In (b), the roll-off factors of the signal spectrum in SP-offset-QAM OFDM and SP-QAM based multi-band CAP are 0.5 and 0.05, respectively.
Fig. 7
Fig. 7 (a) BER versus signal data rate for SP-offset-QAM OFDM, conventional OFDM, and SP-QAM based conventional OFDM with different lengths of CP. (b) Performance versus the length of CP for SP-QAM based conventional OFDM at 40 Gbit/s.
Fig. 8
Fig. 8 (a) BER versus signal data rate when the signal formats are offset-8QAM, offset-16QAM, adaptively loaded conventional offset-QAM, and adaptively loaded SP-offset-QAM. (b) SE versus the index of subcarriers at 40 Gbit/s. The dashed line represents the SNR profiles ( = SNR (dB) / 3). The inset is the electrical spectrum of the received signal.
Fig. 9
Fig. 9 (a) BER versus signal data rate when the signals are SP-offset-QAM OFDM, SP-QAM based multi-band CAP, and conventional multi-band CAP. (b) BER versus the signal data rate of SP-QAM based multi-band CAP with different number of sub-bands. In (a) and (b), the spectrum of multi-band CAP has a roll-off factor of 0.05.
Fig. 10
Fig. 10 (a) BER performance versus the roll-off factor of the signal spectrum for SP-offset-QAM OFDM and SP-QAM based multi-band CAP at 30 Gbit/s. (b) Performance versus the memory length of the FIR filters at 30 Gbit/s. In (b), the roll-off factors of the signal spectrum in SP-offset-QAM OFDM and SP-QAM based multi-band CAP are 0.5 and 0.05, respectively.
Fig. 11
Fig. 11 (a) BER versus signal data rate for SP-offset-QAM OFDM, conventional OFDM, and SP-QAM based conventional OFDM with different lengths of CP. (b)&(c) Constellations of subcarriers allocated with SP-128QAM for (b) SP-QAM based conventional OFDM and (c) SP-offset-QAM OFDM. In (b) and (c), the overall rate is 30 Gbit/s and CP is not used.
Fig. 12
Fig. 12 (a) Performance versus the length of CP for SP-QAM based conventional OFDM at 30 Gbit/s. (b) SNR versus the index of subcarriers for SP-QAM based conventional OFDM and SP-offset-QAM OFDM.
Fig. 13
Fig. 13 (a) BER versus the launch power into the fiber when channel estimation and bit loading are performed for each power or are fixed using the SNR profile obtained at 10-dBm launch power. (b) Performance versus the roll-off factor of the signal spectrum at the receiver when that at the transmitter is 0, 0.5, or 1. In (a) and (b), the data rate is 30 Gbit/s.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

SER<K×Q( 3×2 2 m+1/2 1 SNR )
m n = log 2 (1+ 3×2×SN R n ( Q 1 (SE R preset /K)) 2 γ )0.5
m n =round( m n +1/2)1/2
{ b i,0 =0 b i,n real = a i,n real exp(jπn/2) b i,n imag = a i,n imag exp(jπ(n+1)/2) when n=1...N/21 b i,N/2 =0 b i,n = b i,Nn * when n=N/2+1...N1
s(iN+k)= p= + h filter (iN+kpN) n=0 N1 b p,n real exp(2πjkn/N) + p= + h filter (iN+kN/2pN) n=0 N1 b p,n imag exp(2πjkn/N) = p= + h filter (iN+kpN) s p,k real + p= + h filter (iN+kN/2pN) s p,k imag
s(i(N+G)+k)= p= + n=0 N1 b p,n exp(2πj((ip)(N+G)+k)n/N) h filter ((ip)(N+G)+k)
E(t) | D+r(t) | 2 D 2 +2D×Re[r(t)]+ | r(t) | 2
F{2D×Re[r(t)]}=F{2D×Re[ F 1 { S p (ω)exp(j β 2 L/2× ω 2 )+ S p * (ω)exp(j β 2 L/2× ω 2 )}]} =2D×( S p (ω)×cos( β 2 L/2× ω 2 )+ S p * (ω)×cos( β 2 L/2× ω 2 ))
d i,m real = k=0 N1 q= + exp(2πjkm/N)E(qN+k) h receiver_filter ((iq)Nk)
d i,m real ={ H b (m)exp(jπm/2) H d (m){ a i,m real +j C i,m } when m=1...N/21 H b (m)exp(jπ(mN)/2) H d (m){ a i,Nm real +j C i,m } when m=N/2+1...N1
H d (m)={ cos( β 2 L/2× (2πm/(NT)) 2 ) when m=0...N/2 cos( β 2 L/2× (2π(mN)/(NT)) 2 ) when m=N/2+1...N1
a i,m real Re[ d i,m real H b * (m) H d * (m)exp(jπm/2)] +Re[ d i,Nm real H b * ((Nm)) H d * ((Nm))exp(jπm/2)]

Metrics