Abstract

We report on what is, to the best of our knowledge, the first ultra-efficient 1.5 μm Raman amplifier in a methane-filled anti-resonance hollow-core fiber. A 1.5 μm single frequency seed laser is coupled into the hollow-core fiber together with a 1064 nm pulsed pump laser using a shortpass dichromic mirror, and then amplified by stimulated Raman scattering of methane. A maximum optical-to-optical conversion efficiency of 66.4% has been obtained, resulting in a record near quantum-limit efficiency of 96.3% in a 2 m long hollow-core fiber filled with only 2 bar methane gas. This kind of gas filled hollow-core Raman amplifier provides a potential method to obtain high efficiency mid-infrared laser sources with low threshold and narrow linewidth in various applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source

Zefeng Wang, Bo Gu, Yubin Chen, Zhixian Li, and Xiaoming Xi
Appl. Opt. 56(27) 7657-7661 (2017)

Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber

Zefeng Wang, Walter Belardi, Fei Yu, William J. Wadsworth, and Jonathan C. Knight
Opt. Express 22(18) 21872-21878 (2014)

Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell
J. Opt. Soc. Am. B 29(7) 1563-1568 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
    [Crossref] [PubMed]
  4. L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
    [Crossref]
  5. K. Guo, X. Wang, P. Zhou, and B. Shu, “4 kW peak power, eye-safe all-fiber master-oscillator power amplifier employing Yb-free Er-doped fiber,” Appl. Opt. 54(3), 504–508 (2015).
    [Crossref]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  7. A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
    [Crossref]
  8. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  9. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  10. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  11. S. F. Gao, Y. Y. Wang, X. L. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless Hollow-Core Fiber for the visible spectral range,” Opt. Lett. 42(1), 61–64 (2017).
    [Crossref] [PubMed]
  12. M. S. Habib, O. Bang, and M. Bache, “Low-Loss Hollow-Core Anti-Resonant Fibers with Semi-Circular Nested Tubes,” IEEE J. Sel. Top. Quantum Electron. 22(2), 156–161 (2016).
    [Crossref]
  13. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled HCF by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
    [Crossref]
  14. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-Loss Hollow-Core Anti-Resonant Fibers with Semi-Circular Nested Tubes,” IEEE J. Sel. Top. Quantum Electron. 22(2), 156–161 (2016).
[Crossref]

2015 (3)

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

K. Guo, X. Wang, P. Zhou, and B. Shu, “4 kW peak power, eye-safe all-fiber master-oscillator power amplifier employing Yb-free Er-doped fiber,” Appl. Opt. 54(3), 504–508 (2015).
[Crossref]

2014 (2)

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled HCF by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

2012 (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bache, M.

M. S. Habib, O. Bang, and M. Bache, “Low-Loss Hollow-Core Anti-Resonant Fibers with Semi-Circular Nested Tubes,” IEEE J. Sel. Top. Quantum Electron. 22(2), 156–161 (2016).
[Crossref]

Bang, O.

M. S. Habib, O. Bang, and M. Bache, “Low-Loss Hollow-Core Anti-Resonant Fibers with Semi-Circular Nested Tubes,” IEEE J. Sel. Top. Quantum Electron. 22(2), 156–161 (2016).
[Crossref]

Belardi, W.

Belovolov, M. I.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Biriukov, A. S.

Biryukov, A. S.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Bubnov, M. M.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Bufetov, I. A.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Chen, Y.

Clarkson, W. A.

Couny, F.

Dianov, E. M.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

Gao, S. F.

Gladyshev, A.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Gu, B.

Gu, S.

Guo, K.

Guryanov, A. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Habib, M. S.

M. S. Habib, O. Bang, and M. Bache, “Low-Loss Hollow-Core Anti-Resonant Fibers with Semi-Circular Nested Tubes,” IEEE J. Sel. Top. Quantum Electron. 22(2), 156–161 (2016).
[Crossref]

Hong, C.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Knight, J. C.

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled HCF by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Kolyadin, A. N.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Kosolapov, A. F.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

Kotov, L. V.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Likhachev, M. E.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Lipatov, D. S.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Liu, X. L.

Lu, Q.

Nilsson, J.

Paramonov, V. M.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Plotnichenko, V. G.

Pryamikov, A. D.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

Richardson, D. J.

Roberts, P. J.

Russell, P. S.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Semjonov, S. L.

Shu, B.

Wadsworth, W. J.

Wang, P.

Wang, X.

Wang, Y. Y.

Wang, Z.

Wheeler, N. V.

Yu, F.

Yu, P. Y.

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Zhou, P.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. S. Habib, O. Bang, and M. Bache, “Low-Loss Hollow-Core Anti-Resonant Fibers with Semi-Circular Nested Tubes,” IEEE J. Sel. Top. Quantum Electron. 22(2), 156–161 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 μm emission in H2-filled HCF by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, V. M. Paramonov, M. I. Belovolov, D. S. Lipatov, and A. N. Guryanov, “Record peak power single-frequency erbium-doped fiber amplifiers,” Proc. SPIE 9344, 934408 (2015).
[Crossref]

Quantum Electron. (1)

A. Gladyshev, A. N. Kolyadin, A. F. Kosolapov, P. Y. Yu, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Efficient Raman generation of 1.9 um radiation in hollow optical fiber filled with hydrogen,” Quantum Electron. 45(9), 807–812 (2015).
[Crossref]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. ①: photodiode output;②: amplified photodiode output;③: PZT scanning driven voltage;④: trigger signal; L, convex-plane lens; M, HR mirror; λ/2, half-wave plate; PBS, polarization beam splitter; DM, dichroic mirror; W, AR-coated silica window; GC, gas cell; HCF, hollow-core fiber; LPF, long-pass filter.

Fig. 2
Fig. 2

(a) The scanning electron micrograph (SEM) of the HCF’s cross section. Near-field pattern of the transmitted pump laser (b) and Stokes signal (c) at the output of the HCF.

Fig. 3
Fig. 3

(a) The measured output spectrum as a function of the coupled pump power without the seed laser (The spectrum from 400 to 1200 nm and 1200-2400 nm are measured with different OSA with different sensitivity and the relative intensities of spectral lines between this two spectral ranges are incomparable). (b) The leaked green (AS3, 551.1 nm) and blue (AS4, 474.7 nm) lights from the side of the HCF. Insert: the red light (AS2, 656.6 nm) observed at the output of the HCF. Fiber length, 2 m; methane pressure, 2 bar.

Fig. 4
Fig. 4

The effects of the seed laser on power output and efficiency feature. (a) The measured transmitted Raman power (excluding the seed laser power) and residual pump power as a function of the coupled pump power. (b) The Raman conversion efficiency and pump residual ratio as a function of the coupled pump power. Fiber length, 2 m; methane pressure, 1 bar.

Fig. 5
Fig. 5

The measured Raman power (a) and Raman conversion efficiency (b) with 22.6 mW coupled seed laser power at different methane gas pressure.

Fig. 6
Fig. 6

Measured lineshapes of the pump (a) and the seed (b) laser using F-P interferometer.

Fig. 7
Fig. 7

(a) The measured spectrum of the seed laser and Stokes transition. (b) Ramp scanning voltage of the F-P interferometer. (c) The measured Stokes lineshape with 22.6 mW coupled seed laser. (d) The measured Stokes lineshape without seed laser. (e) The evolution of the measured Stokes linewidth as a function of the wavelength mismatching between the seed laser and Stokes transition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δv= FSR ΔT .Δt

Metrics