Abstract

Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical response up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [Crossref]
  2. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
    [Crossref] [PubMed]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  4. N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
    [Crossref] [PubMed]
  5. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
    [Crossref]
  6. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
    [Crossref] [PubMed]
  7. H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
    [Crossref] [PubMed]
  8. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
    [Crossref] [PubMed]
  9. M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
    [Crossref] [PubMed]
  10. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  11. R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
    [Crossref] [PubMed]
  12. F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
    [Crossref] [PubMed]
  13. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
    [Crossref] [PubMed]
  14. T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
    [Crossref]
  15. A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
    [Crossref]
  16. N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
    [Crossref]
  17. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
    [Crossref]
  18. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref] [PubMed]
  19. J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
    [Crossref]
  20. D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).
  21. J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
    [Crossref]
  22. J. F. Brachmann, H. Kaupp, T. W. Hänsch, and D. Hunger, “Photothermal effects in ultra-precisely stabilized tunable microcavities,” Opt. Express 24, 21205–21215 (2016).
    [Crossref] [PubMed]
  23. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
    [Crossref] [PubMed]
  24. E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
    [Crossref]
  25. B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
    [Crossref]
  26. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  27. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [Crossref]
  28. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [Crossref]
  29. M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
    [Crossref]
  30. C. Reinhardt, T. Müller, and J. C. Sankey, “Simple delay-limited sideband locking with heterodyne readout,” Opt. Express 25, 1582–1597 (2017).
    [Crossref] [PubMed]
  31. M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
    [Crossref]
  32. J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
    [Crossref]
  33. ANSYS® Workbench, 17th ed.

2017 (4)

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

C. Reinhardt, T. Müller, and J. C. Sankey, “Simple delay-limited sideband locking with heterodyne readout,” Opt. Express 25, 1582–1597 (2017).
[Crossref] [PubMed]

2016 (2)

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

J. F. Brachmann, H. Kaupp, T. W. Hänsch, and D. Hunger, “Photothermal effects in ultra-precisely stabilized tunable microcavities,” Opt. Express 24, 21205–21215 (2016).
[Crossref] [PubMed]

2015 (2)

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

2014 (1)

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

2013 (4)

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

2012 (1)

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

2010 (4)

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[Crossref] [PubMed]

2007 (2)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[Crossref] [PubMed]

2005 (2)

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
[Crossref]

2004 (1)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

2003 (1)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
[Crossref]

2002 (3)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

1985 (1)

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Alavi, S. K.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Alt, W.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

Appel, P.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Ballance, T. G.

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

Becher, C.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Bechhoefer, J.

J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
[Crossref]

Beloy, K.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Benedikter, J.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Bjorklund, G. C.

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Blatt, R.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
[Crossref]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Bommer, A.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Bourassa, A.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

Brachmann, J. F.

Brandstätter, B.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Brekenfeld, M.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Briles, T. C.

Brown, C.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

Casabone, B.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Childress, L.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

Cingöz, A.

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Delley, Y.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Dimock, M.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

Doherty, A.

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Dubois, G.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Estève, J.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Flowers-Jacobs, N.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Friebe, K.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Gallego, J.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

Gehr, R.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Gehrtz, M.

Ghosh, S.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

Götzinger, S.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Haas, F.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hänsch, T. W.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

J. F. Brachmann, H. Kaupp, T. W. Hänsch, and D. Hunger, “Photothermal effects in ultra-precisely stabilized tunable microcavities,” Opt. Express 24, 21205–21215 (2016).
[Crossref] [PubMed]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Harris, J.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

Hinkley, N.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Hoch, S.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Hohmann, L.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hümmer, T.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Hunger, D.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

J. F. Brachmann, H. Kaupp, T. W. Hänsch, and D. Hunger, “Photothermal effects in ultra-precisely stabilized tunable microcavities,” Opt. Express 24, 21205–21215 (2016).
[Crossref] [PubMed]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Janitz, E.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

Jayich, A.

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Kashkanova, A.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Kaupp, H.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

J. F. Brachmann, H. Kaupp, T. W. Hänsch, and D. Hunger, “Photothermal effects in ultra-precisely stabilized tunable microcavities,” Opt. Express 24, 21205–21215 (2016).
[Crossref] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

Kimble, H. J.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Kobel, P.

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

Köhl, M.

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Krueger, A.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

Leibfried, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
[Crossref]

Lemke, N.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Lev, B. L.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Liang, Y.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Long, R.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Ludlow, A.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Mabuchi, H.

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

Maletinsky, P.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Martinez-Dorantes, M.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

McClung, A.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Meschede, D.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

Meyer, H. M.

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Monroe, C.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
[Crossref]

Müller, T.

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Neu, E.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Northup, T. E.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

Oates, C.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Ott, K.

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[Crossref] [PubMed]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

Phillips, N.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Pizzocaro, M.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Rakhmanov, M.

M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
[Crossref]

Ratschbacher, L.

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

Reichel, J.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Reinhardt, C.

Reitze, D.

M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
[Crossref]

Rempe, G.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Renn, A.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Riedel, D.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Ritter, S.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Ruf, M.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

Sandoghdar, V.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Sankey, J.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

Sankey, J. C.

Savage, R.

M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
[Crossref]

Schibli, T. R.

Schioppo, M.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Schmidt, P. O.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Schüppert, K.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Sherman, J.

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Shields, B. J.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Shkarin, A.

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

Smith, J. M.

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Söllner, I.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Srinivasan, K.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[Crossref] [PubMed]

Starosielec, S.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Steiner, M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Steinmetz, T.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

Stöferle, T.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Stute, A.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Tanner, D.

M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
[Crossref]

Toninelli, C.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Uphoff, M.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Volz, J.

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

Warburton, R. J.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Whittaker, E. A.

Wineland, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
[Crossref]

Ye, J.

Yost, D. C.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Appl. Phys. B (2)

J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 1–14 (2016).
[Crossref]

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (2)

N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 221109 (2012).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

A. Kashkanova, A. Shkarin, C. Brown, N. Flowers-Jacobs, L. Childress, S. Hoch, L. Hohmann, K. Ott, J. Reichel, and J. Harris, “Superfluid Brillouin optomechanics,” Nat. Phys. 13, 74–79 (2017).
[Crossref]

Nature (5)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005).
[Crossref] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004).
[Crossref] [PubMed]

New J. Phys. (2)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “A fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Opt. Express (3)

Phys. Lett. A (1)

M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, “Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett. A 305, 239–244 (2002).
[Crossref]

Phys. Rev. A (2)

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A 92, 043844 (2015).
[Crossref]

T. G. Ballance, H. M. Meyer, P. Kobel, K. Ott, J. Reichel, and M. Köhl, “Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity,” Phys. Rev. A 95, 033812 (2017).
[Crossref]

Phys. Rev. Appl. (1)

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, C. Becher, A. Krueger, J. M. Smith, T. W. Hänsch, and D. Hunger, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl. 7, 024031 (2017).
[Crossref]

Phys. Rev. Lett. (3)

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref] [PubMed]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 (2003).
[Crossref]

J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Science (3)

F. Haas, J. Volz, R. Gehr, J. Reichel, and J. Estève, “Entangled states of more than 40 atoms in an optical fiber cavity,” Science 344, 180–183 (2014).
[Crossref] [PubMed]

H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[Crossref] [PubMed]

N. Hinkley, J. Sherman, N. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Ludlow, “An atomic clock with 10–18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Other (2)

ANSYS® Workbench, 17th ed.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” arXiv:1703.00815 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) An image of the assembled fiber-coupled Fabry-Perot cavity device (inset: a microscope camera image showing the fiber mirror glued to the shear piezo, where the reflection can be seen in the flat mirror). b) A schematic showing the Pound-Drever-Hall locking circuit and a sample error signal measured for our cavity. The low amplitude nonideality visible to the right of the error signal (indicated with a red arrow) corresponds to the incompletely suppressed orthogonal linear polarization mode. EOM: electro-optic modulator; VCO: voltage controlled oscillator; PD: photodiode; C: circulator; filter: interchangeable analog filter circuit; P: polarization control; PI: proportional-integral amplifier.

Fig. 2
Fig. 2

a) A block diagram illustrating the feedback loop. All circuit elements and signals are analyzed as a function of frequency. b) Circuit transfer functions (PGMF) extracted for the two different filter configurations (as described in the text). The circuit bandwidth, first ringing point, and first direct resonance are indicated with arrows (inset: high resolution plot of the measured phase response about the first direct resonance). The low frequency gains given one and two poles of roll-off from the bandwidth frequency are indicated with dashed lines. c) A circuit diagram for the electronic filter F. d) A time trace of the error signal where the gain has been increased to cause ringing at 179 kHz (fit overlaid in red).

Fig. 3
Fig. 3

a) The system transfer function normalized to the low frequency magnitude. b) The amplitude of the measured system transfer function overlaid with a range of simulated mechanical resonant frequencies (black vertical lines). The low, medium, and high frequency regions as discussed in Section 4 are indicated by the blue, red, and orange shaded regions respectively. The simulated mechanical displacement for three typical resonances from the different regions are shown above (images used courtesy of ANSYS, Inc.), where the first mode corresponds to slipping motion of the flat mirror, the second mode corresponds to flexing of the jig under the piezo, and the third mode corresponds to motion of the fiber along the optical axis. These representations are exaggerated with respect to real displacement for clarity, with elements in red (blue) being subjected to larger (smaller) displacement for a given mode.

Fig. 4
Fig. 4

The system transfer function (G) before and after thermal cycling. The fiber mirror used before thermal cycling was replaced to facilitate a longer cavity length (shorter fiber overhang), and the piezo stack is unchanged.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e = T 1 + PGMF b TMF 1 + PGMF d .
PGMF = T b e 1 .
F = R 2 ( C 1 R 1 ω i ) ( C 1 + C 2 ) R 1 R 2 ω i ( R 1 + R 2 )

Metrics