Abstract

High-sensitivity complex refractive index sensing is proposed and experimentally demonstrated, favoring with sharp Fano resonance at 1550 nm wavelength based on subwavelength grating waveguide (SWG) micro-ring resonator. The micro-ring is composed by trapezoidal silicon pillars with subwavelength period to enhance the light-analyte overlap and get high quality factor as well. One straight SWG waveguide is side coupled with the micro-ring, which is specially designed to produce partial Fabry-Perot (FP) effect. Due to the interaction of resonant state of micro-ring and partial FP effect in straight waveguide, a sharp asymmetrical Fano resonance is formed at 1550 nm wavelength. Benefit from the large light-analyte overlap of the SWG waveguide structure and the sharp asymmetrical Fano resonance in spectrum, high theoretical sensitivities of 366 nm/RIU and 9700/RIU can be realized for the real part (n) and the imaginary part (κ) of refractive index respectively. We also experimentally demonstrate the sensing for glucose solution concentrations, and high experimental sensitivity of 363nm/RIU is obtained for n, and for κ the experimental results are also in well agreement with the simulation results.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist, Sahba Talebi Fard, and Lukas Chrostowski
Opt. Express 23(4) 4791-4803 (2015)

Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators

Lijun Huang, Hai Yan, Xiaochuan Xu, Swapnajit Chakravarty, Naimei Tang, Huiping Tian, and Ray T. Chen
Opt. Express 25(9) 10527-10535 (2017)

Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators

Carlo Edoardo Campanella, Francesco De Leonardis, Lorenzo Mastronardi, Pietro Malara, Gianluca Gagliardi, and Vittorio M. N. Passaro
Opt. Express 23(11) 14301-14313 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
    [Crossref] [PubMed]
  2. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
    [Crossref] [PubMed]
  3. L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
    [Crossref]
  4. A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  5. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  6. X. Zhang, G. Zhou, P. Shi, H. Du, T. Lin, J. Teng, and F. S. Chau, “On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities,” Opt. Lett. 41(6), 1197–1200 (2016).
    [Crossref] [PubMed]
  7. T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
    [Crossref]
  8. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
    [Crossref] [PubMed]
  9. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  10. V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
    [Crossref] [PubMed]
  11. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
    [Crossref] [PubMed]
  12. H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
    [Crossref] [PubMed]
  13. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
    [Crossref] [PubMed]
  14. U. Fano, “Effects of configuration interaction on the intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  15. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [Crossref]
  16. P. Xu, K. Yao, J. Zheng, X. Guan, and Y. Shi, “Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing,” Opt. Express 21(22), 26908–26913 (2013).
    [Crossref] [PubMed]
  17. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [Crossref]
  18. H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
    [Crossref] [PubMed]
  19. L. Huang, H. Yan, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators,” Opt. Express 25(9), 10527–10535 (2017).
    [Crossref] [PubMed]
  20. Z. Wang, X. Xu, D. Fan, Y. Wang, and R. T. Chen, “High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars,” Opt. Lett. 41(14), 3375–3378 (2016).
    [Crossref] [PubMed]
  21. F. D. T. D. Solutions, Lumerical Solutions, Inc, http://www.lumerical.com .
  22. A. C. Ruege and R. M. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17(6), 4295–4305 (2009).
    [Crossref] [PubMed]
  23. Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
    [Crossref]

2017 (1)

2016 (5)

2015 (1)

2014 (2)

2013 (1)

2011 (2)

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (2)

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
[Crossref]

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

2006 (1)

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on the intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Aers, G. C.

Alonso-Ramos, C.

Bock, P. J.

Cassan, E.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Chakravarty, S.

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Chau, F. S.

Cheben, P.

Chen, R. T.

Chen, S.-L.

Chen, W.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Cheung, K. C.

Chrostowski, L.

Chu, S. T.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Citrin, D. S.

Clarke, J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Delâge, A.

Densmore, A.

Donzella, V.

Du, H.

Fan, D.

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on the intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fard, S. T.

Flood, E. M.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Flueckiger, J.

Gao, D.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Gill, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Goad, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Gonzalo Wangüemert-Pérez, J.

Grist, S. M.

Guan, X.

Guo, L. J.

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Halir, R.

Hall, T. J.

He, J. J.

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Hryniewicz, J. V.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Huang, L.

Ilchenko, V.

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Ja, S. J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Janz, S.

Jin, L.

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

King, O.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Knobbe, E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Lapointe, J.

Li, M.

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Li, T.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Lin, T.

Ling, T.

Little, B. E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Matsko, A.

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Molina-Fernández, I.

Ortega-Moñux, A.

Pérez-Galacho, D.

Ramachandran, A.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Ratner, D. M.

Reano, R. M.

Ruege, A. C.

Schmid, J. H.

Schmidt, S.

Sherwali, A.

Shi, P.

Shi, Y.

Talebi Fard, S.

Tang, N.

Teng, J.

Tian, H.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Wald, L.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Wang, S.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Wang, Y.

Wang, Z.

Xu, D.-X.

Xu, P.

Xu, X.

Yan, H.

Yao, K.

Yeh, Y. L.

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
[Crossref]

Yi, H.

Zhang, D.

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Zhang, X.

Zheng, J.

Zhou, G.

Zhou, Z.

Appl. Phys. Lett. (2)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Biosens. Bioelectron. (1)

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Matsko and V. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Li, D. Gao, D. Zhang, and E. Cassan, “High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors,” IEEE Photonics Technol. Lett. 28(6), 689–692 (2016).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Jin, M. Li, and J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Opt. Express (10)

A. C. Ruege and R. M. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17(6), 4295–4305 (2009).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
[Crossref] [PubMed]

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
[Crossref] [PubMed]

L. Huang, H. Yan, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators,” Opt. Express 25(9), 10527–10535 (2017).
[Crossref] [PubMed]

P. Xu, K. Yao, J. Zheng, X. Guan, and Y. Shi, “Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing,” Opt. Express 21(22), 26908–26913 (2013).
[Crossref] [PubMed]

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24(26), 29724–29733 (2016).
[Crossref] [PubMed]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46(9), 666–670 (2008).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on the intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Other (1)

F. D. T. D. Solutions, Lumerical Solutions, Inc, http://www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The sketch of the SWG structure, nsub is the index of the substrate, n1 and n2 refer to the high and low indexes, Λ is the space period, and f is the filling ratio of the high index medium.

Fig. 2
Fig. 2

The 3D schematic of SWGMR with trapezoidal silicon pillars.

Fig. 3
Fig. 3

(a) Top view of the SWGMR, which radius is R; (b) Magnified view of the coupling region, marked by doted block in (a). The gap between the SWGMR and the bus waveguide is g. The trapezoidal and rectangular SWGs have same width of w. The filling ratio and period of rectangular SWG are f and Λ; (c) The structure parameters of trapezoidal silicon pillars, which top and bottom widths are LB and LT respectively.

Fig. 4
Fig. 4

The mechanism of Fano resonance formation in the system of a cavity couple with a partially reflecting bus waveguide.

Fig. 5
Fig. 5

The transmission spectra are shown in (a) large wavelength range from 1200~2000nm and (b) enlarge view in small wavelength range from 1500~1600nm. Black line refers to a SWG stripe waveguide with Λ = 250nm, f = 0.7, and red line refers to a SWG stripe waveguide with Λ = 360nm, f = 0.7; (c) The light field distribution of the SWG stripe waveguide with Λ = 250nm, f = 0.7; (d) the light field distribution of the SWG stripe waveguide with Λ = 360nm, f = 0.7.

Fig. 6
Fig. 6

The transmission spectrum when our SWGMR is immersed in the deionized water environment.

Fig. 7
Fig. 7

(a) Transmission spectra when κ = 0 and n varies; (b) Transmission spectra when n = 1.333 and κ varies.

Fig. 8
Fig. 8

(a) Resonant wavelength shifts with the variation of n and the linear fit; (b) The relationship between P value and κ, and the exponential fit; (c) The relationship between F value and κ, as well as the linear fit.

Fig. 9
Fig. 9

SEM images of the fabricated SWGMR device. (a) Grating coupler; (b) Taper structure connecting traditional stripe waveguide and SWG; (c) SWG micro-ring resonator; (d) Magnified view of the gap region between the ring and bus waveguide.

Fig. 10
Fig. 10

The setup of the sensing experiment system.

Fig. 11
Fig. 11

Experimental transmission spectra of the SWGMR device immersed in (a) deionized water and (b)-(f) different concentrations of glucose solutions. For better comparison, the transmission spectra of (b)-(f) have been moved downward by step of −25dBm.

Fig. 12
Fig. 12

Experimental sensing data analysis. (a) Resonant wavelength shifts with the variation of glucose solution’s concentration and the linear fit; (b) The relationship between the P value and the glucose solution’s concentration and the exponential fit; (c) The relationship between the F value and the glucose solution’s concentration and the linear fit.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V= I max I min I max + I min .
D(λ)=| λdipλpeak |.
P= V D(λ) .
S n = Δλ Δn =366nm/RIU
F=10log(P)
S κ = ΔF Δκ =9700/RIU
LO D n = 0.02nm 366nm/RIU =5.4645× 10 5 RIU
LO D κ = (29.25/RIU)10LO D n 9700/RIU =1.6478× 10 6 RIU

Metrics