Abstract

The compression of high-energy, radially polarized pulses in a gas-filled hollow-core fiber (HCF) is theoretically studied. The simulation results indicate that a 40-fs input pulse can be compressed to a full-width at half-maximum of less than 9 fs when the pulse energy reaches 7.0 mJ with a transmission efficiency of more than 67% after propagating through a 1-m-long, 500-μm diameter HCF filled with neon. Furthermore, the spatio-temporal intensity distributions of the compressed pulses with different initial input energies are studied, and the numerical results indicate that the spatio-temporal intensity distributions are more uniform for lower input pulse energies.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066603 (2003).
    [Crossref] [PubMed]
  2. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
    [Crossref]
  3. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006).
    [Crossref] [PubMed]
  4. S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
    [Crossref] [PubMed]
  5. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15(9), 5394–5404 (2007).
    [Crossref] [PubMed]
  6. C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
    [Crossref] [PubMed]
  7. Dongjia Han, Yanyan Li, Juan Du, Kun Wang, Yongfang Li, Tomohiro Miyatake, Hitoshi Tamiaki, Takayoshi Kobayashi, and Yuxin Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13, 121401- (2015).
  8. Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
    [Crossref]
  9. J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
    [Crossref] [PubMed]
  10. A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
    [Crossref]
  11. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  12. S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
    [Crossref] [PubMed]
  13. H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
    [Crossref]
  14. H. Jacqmin, A. Jullien, B. Mercier, M. Hanna, F. Druon, D. Papadopoulos, and R. Lopez-Martens, “Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor,” Opt. Lett. 40(5), 709–712 (2015).
    [Crossref] [PubMed]
  15. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
    [Crossref]
  16. C. Li, K. P. M. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
    [Crossref] [PubMed]
  17. X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
    [Crossref] [PubMed]
  18. F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
    [Crossref]
  19. X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
    [Crossref]
  20. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [Crossref]
  21. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  22. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1 (2009).
    [Crossref]
  23. B. Hao and J. Leger, “Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam,” Opt. Express 15(6), 3550–3556 (2007).
    [Crossref] [PubMed]
  24. S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
    [Crossref]
  25. V. Marceau, A. April, and M. Piché, “Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses,” Opt. Lett. 37(13), 2442–2444 (2012).
    [Crossref] [PubMed]
  26. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005).
    [Crossref] [PubMed]
  27. S. Carbajo, E. Granados, D. Schimpf, A. Sell, K. H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39(8), 2487–2490 (2014).
    [Crossref] [PubMed]
  28. D. Wang, L. Qiao, R. Zhao, Y. Zhao, and Y. Leng, “Propagation dynamics of radially polarized pulses in a gas-filled hollow-core fiber,” Opt. Express 25(4), 3083–3091 (2017).
    [Crossref] [PubMed]
  29. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
    [Crossref] [PubMed]
  30. J. Andreasen and M. Kolesik, “Midinfrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 053303 (2013).
    [Crossref] [PubMed]
  31. J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
    [Crossref] [PubMed]
  32. N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
    [Crossref]
  33. A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38(11), 1906–1908 (2013).
    [Crossref] [PubMed]
  34. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).
  35. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
    [Crossref]
  36. D. Uryupina, M. Kurilova, A. Mazhorova, N. Panov, R. Volkov, S. Gorgutsa, O. Kosareva, A. Savel’ev, and S. L. Chin, “Few-cycle optical pulse production from collimated femtosecond laser beam filamentation,” J. Opt. Soc. Am. B 27(4), 667–674 (2010).
    [Crossref]
  37. C. Li, K. P. M. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (3)

2012 (2)

V. Marceau, A. April, and M. Piché, “Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses,” Opt. Lett. 37(13), 2442–2444 (2012).
[Crossref] [PubMed]

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

2011 (2)

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

2010 (1)

2009 (4)

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1 (2009).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

2007 (3)

2006 (3)

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006).
[Crossref] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
[Crossref]

2005 (1)

2004 (2)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

2003 (2)

S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066603 (2003).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

1997 (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

1996 (1)

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

Andreasen, J.

J. Andreasen and M. Kolesik, “Midinfrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 053303 (2013).
[Crossref] [PubMed]

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

Andreeva, V. A.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38(11), 1906–1908 (2013).
[Crossref] [PubMed]

April, A.

Bergé, L.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066603 (2003).
[Crossref] [PubMed]

Biegert, J.

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15(9), 5394–5404 (2007).
[Crossref] [PubMed]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Bisgaard, C. Z.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Böhle, F.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Borodin, A. V.

Borot, A.

Brambilla, E.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

Canova, L.

Carbajo, S.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K. H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39(8), 2487–2490 (2014).
[Crossref] [PubMed]

Champeaux, S.

S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066603 (2003).
[Crossref] [PubMed]

Chang, Z.

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Chen, N.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Chen, X.

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref] [PubMed]

Cheng, Z.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Chin, S. L.

Christov, I. P.

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

Clarkin, O. J.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Corti, T.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

Couairon, A.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15(9), 5394–5404 (2007).
[Crossref] [PubMed]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Crespo, H.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

De Silvestri, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Druon, F.

Durfee, C. G.

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Eidam, T.

Esaulkov, M. N.

Faccio, D.

Franco, M.

Gallmann, L.

Gan, X.

Gessner, O.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Gorgutsa, S.

Gottschall, T.

Granados, E.

Gu, M.

Guandalini, A.

Hädrich, S.

Hanna, M.

Hao, B.

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Hayden, C. C.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Hoffmann, A.

Holler, M.

Hong, K. H.

Horak, P.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Ivanov, M. Yu.

A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
[Crossref]

Jacqmin, H.

Jia, B.

Ju, J.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Jullien, A.

H. Jacqmin, A. Jullien, B. Mercier, M. Hanna, F. Druon, D. Papadopoulos, and R. Lopez-Martens, “Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor,” Opt. Lett. 40(5), 709–712 (2015).
[Crossref] [PubMed]

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref] [PubMed]

Kapteyn, H. C.

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

Kartner, F. X.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Kärtner, F. X.

Keathley, P. D.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Keller, U.

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15(9), 5394–5404 (2007).
[Crossref] [PubMed]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Kienberger, R.

A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
[Crossref]

Klenke, A.

Kolesik, M.

J. Andreasen and M. Kolesik, “Midinfrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 053303 (2013).
[Crossref] [PubMed]

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Kosareva, O.

Kosareva, O. G.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38(11), 1906–1908 (2013).
[Crossref] [PubMed]

Kovacs, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Kretschmar, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Kurilova, M.

Laurent, G.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Lederer, F.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

Lee, A. M. D.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Leger, J.

Leng, Y.

Lenzner, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Li, C.

Li, R.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Limpert, J.

Liu, J.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Liu, Y.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Lopez-Martens, R.

H. Jacqmin, A. Jullien, B. Mercier, M. Hanna, F. Druon, D. Papadopoulos, and R. Lopez-Martens, “Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor,” Opt. Lett. 40(5), 709–712 (2015).
[Crossref] [PubMed]

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref] [PubMed]

Lu, H.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Majus, D.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

Makarov, V. A.

Malvache, A.

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref] [PubMed]

Marceau, V.

Mashiko, H.

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Matsuura, Y.

Mazhorova, A.

Mercier, B.

Miller, R. J. D.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Miranda, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Moloney, J. V.

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

Moon, E.

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Morgner, U.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Moriena, G.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Moses, J.

Murnane, M. M.

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

Mysyrowicz, A.

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, “Spatio-temporal characterization of few-cycle pulses obtained by filamentation,” Opt. Express 15(9), 5394–5404 (2007).
[Crossref] [PubMed]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Nagy, T.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Nakamura, C. M.

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Nanni, E. A.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Nisoli, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Panov, N.

Panov, N. A.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38(11), 1906–1908 (2013).
[Crossref] [PubMed]

Papadopoulos, D.

Peatross, J.

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

Piché, M.

Polynkin, P.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

Qiao, L.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Ramírez-Góngora, O. D. J.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

Ricci, A.

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

Rishad, K. P. M.

Romero, R.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Rothhardt, J.

Saletsky, A. M.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

Sartania, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Savel’ev, A.

Schapper, F.

Schimpf, D.

Schnürer, M.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

Scrinzi, A.

A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
[Crossref]

Sell, A.

Shipilo, D. E.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

Shkurinov, A. P.

Simon, P.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Skupin, S.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

Sokollik, T.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

Spielmann, C.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Stagira, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Steinmeyer, G.

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006).
[Crossref] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

Stibenz, G.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006).
[Crossref] [PubMed]

Stolow, A.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Sun, H.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Svelto, O.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Tackett, J.

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

Trisorio, A.

Tünnermann, A.

Uryupina, D.

Villeneuve, D. M.

A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
[Crossref]

Volkov, R.

Wang, C.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Wang, D.

Wang, H.

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Wang, T.-J.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Wei, Y.

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

Wong, L. J.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Wu, G.

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Xu, H.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

Zaïr, A.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1 (2009).
[Crossref]

Zhang, X.-C.

Zhao, R.

Zhao, Y.

Zhavoronkov, N.

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1 (2009).
[Crossref]

Appl. Phys. B (2)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65(2), 189–196 (1997).
[Crossref]

Appl. Phys. Lett. (1)

H. Mashiko, C. M. Nakamura, C. Li, E. Moon, H. Wang, J. Tackett, and Z. Chang, “Carrier-envelope phase stabilized 5.6 fs, 1.2 mJ pulses,” Appl. Phys. Lett. 90(16), 161114 (2007).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199(1), 5–76 (2011).
[Crossref]

High Power Laser Sci. Eng. (1)

Y. Wei, Y. Liu, T.-J. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, “Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding,” High Power Laser Sci. Eng. 4(1), e8 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39(1), R1–R37 (2006).
[Crossref]

Laser Phys. (1)

X. Chen, A. Malvache, A. Ricci, A. Jullien, and R. Lopez-Martens, “Efficient hollow fiber compression scheme for generating multi-mJ, carrier-envelope phase stable, sub-5 fs pulses,” Laser Phys. 21(1), 198–201 (2011).
[Crossref]

Laser Phys. Lett. (1)

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11(9), 095401 (2014).
[Crossref]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K. H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39(8), 2487–2490 (2014).
[Crossref] [PubMed]

A. V. Borodin, N. A. Panov, O. G. Kosareva, V. A. Andreeva, M. N. Esaulkov, V. A. Makarov, A. P. Shkurinov, S. L. Chin, and X.-C. Zhang, “Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases,” Opt. Lett. 38(11), 1906–1908 (2013).
[Crossref] [PubMed]

V. Marceau, A. April, and M. Piché, “Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses,” Opt. Lett. 37(13), 2442–2444 (2012).
[Crossref] [PubMed]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, “Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament,” Opt. Lett. 31(2), 274–276 (2006).
[Crossref] [PubMed]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34(10), 1588–1590 (2009).
[Crossref] [PubMed]

H. Jacqmin, A. Jullien, B. Mercier, M. Hanna, F. Druon, D. Papadopoulos, and R. Lopez-Martens, “Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor,” Opt. Lett. 40(5), 709–712 (2015).
[Crossref] [PubMed]

S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power,” Opt. Lett. 38(19), 3866–3869 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

N. A. Panov, D. E. Shipilo, V. A. Andreeva, O. G. Kosareva, A. M. Saletsky, H. Xu, and P. Polynkin, “Supercontinuum of a 3.9-μm filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption,” Phys. Rev. A 94(4), 041801 (2016).
[Crossref]

Phys. Rev. Accel. Beams (1)

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kartner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19(2), 021303 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (5)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

J. Andreasen and M. Kolesik, “Midinfrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 053303 (2013).
[Crossref] [PubMed]

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(3), 036706 (2012).
[Crossref] [PubMed]

S. Champeaux and L. Bergé, “Femtosecond pulse compression in pressure-gas cells filled with argon,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066603 (2003).
[Crossref] [PubMed]

S. Skupin, G. Stibenz, L. Bergé, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056604 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev. Lett. 76(5), 752–755 (1996).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Science (1)

C. Z. Bisgaard, O. J. Clarkin, G. Wu, A. M. D. Lee, O. Gessner, C. C. Hayden, and A. Stolow, “Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules,” Science 323(5920), 1464–1468 (2009).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

Other (1)

Dongjia Han, Yanyan Li, Juan Du, Kun Wang, Yongfang Li, Tomohiro Miyatake, Hitoshi Tamiaki, Takayoshi Kobayashi, and Yuxin Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13, 121401- (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy transmissions with different initial incident energies of RP pulses along propagation in HCF.

Fig. 2
Fig. 2

Normalized spatio-temporal distribution of compressed pulses.

Fig. 3
Fig. 3

Temporal intensity profiles of compressed pulses for different energies. The blue dot-dash line and the red solid line indicate the temporal power profile and the profile of peak intensity, respectively.

Fig. 4
Fig. 4

Output power spectra of RP pulses.

Fig. 5
Fig. 5

Normalized spatio-spectral distributions of output pulse spectrum.

Fig. 6
Fig. 6

(a) Normalized spatial intensity profile in the transverse section of input pulse at the entrance of the HCF when RP input energy is 5.0–7.0 mJ. (b) Normalized spatial intensity profiles in transverse section of input pulse at the entrance of HCF when LP pulse energy is 2.0 mJ.

Fig. 7
Fig. 7

Normalized spatial intensity profiles of different initial input energies. (a)–(e) Output pulses at the exit of the HCF when input energy of RP pulse is 5, 5.5, 6, 6.5, and 7 mJ, respectively. (f) Normalized spatial intensity profiles in transverse section of output pulse at the exit of HCF when input energy of LP pulse is 2.0 mJ, respectively.

Fig. 8
Fig. 8

(a)The dependences on propagation length of the maximum peak intensity. The red solid line and blue solid line indicate the profile of RP pulses and LP pulses, respectively. The unit of peak intensity is TW/μm2. (b)The dependences on propagation length of the peak plasma density. The red solid line and blue solid line indicate the profile of RP pulses and LP pulses, respectively. The unit of peak intensity is μm−3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z E(z,r,ω)=i( L ^ ω v g )E(z,r,ω)+ ω 2β c 2 [ iω P( z,r,ω ) ε 0 j( z,r,ω ) ε 0 ],
t ρ=W( I )( ρ nt ρ )+ σρI U i ,
E compressed (r,ω)= E output (r,ω)exp(i d GDD (ω ω 0 ) 2 /2),
E(z=0,r,t)= E 0 f(r)exp( r 2 ω 0 2 )exp( t 2 2 t 0 2 ),

Metrics