Abstract

Based on the technique of periodically poled lithium niobate waveguide, up-conversion single-photon detection at 1.064-μm is demonstrated. We have achieved a system photon detection efficiency of 32.5% with a very low noise count rate of 45 counts per second by pumping with a 1.55-μm-band single frequency laser using the long-wavelength pumping technique and exploiting volume Bragg grating as a narrow band filter. Replacing the volume Bragg grating with a combination of adequate dielectric filters, a detection efficiency of up to 38% with a noise count rate of 700 counts per second is achieved, making the overall system stable and practical. The up-conversion single-photon detector operating at 1.064 μm can be a promising robust counter and find usage in many fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow noise up-conversion detector and spectrometer for the telecom band

Guo-Liang Shentu, Jason S. Pelc, Xiao-Dong Wang, Qi-Chao Sun, Ming-Yang Zheng, M. M. Fejer, Qiang Zhang, and Jian-Wei Pan
Opt. Express 21(12) 13986-13991 (2013)

Up-conversion single-photon detector using multi-wavelength sampling techniques

Lijun Ma, Joshua C. Bienfang, Oliver Slattery, and Xiao Tang
Opt. Express 19(6) 5470-5479 (2011)

217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector

Guo-Liang Shentu, Qi-Chao Sun, Xiao Jiang, Xiao-Dong Wang, Jason S. Pelc, M. M. Fejer, Qiang Zhang, and Jian-Wei Pan
Opt. Express 21(21) 24674-24679 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32(21), 3894–3900 (1993).
    [Crossref] [PubMed]
  2. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  3. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
    [Crossref]
  4. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors,” Appl. Opt. 35(16), 2986–2996 (1996).
    [Crossref] [PubMed]
  5. A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
    [Crossref]
  6. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
    [Crossref]
  7. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  8. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
    [Crossref] [PubMed]
  9. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9–10), 1433–1445 (2004).
    [Crossref]
  10. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  11. B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
    [Crossref]
  12. M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55mum up-conversion photon-counting module,” Opt. Express 15(13), 8237–8242 (2007).
    [Crossref] [PubMed]
  13. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
    [Crossref] [PubMed]
  14. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17(16), 14395–14404 (2009).
    [Crossref] [PubMed]
  15. J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
    [Crossref] [PubMed]
  16. M. Pfennigbauer and A. Ullrich, “Applicability of single photon detection for laser radar,” E&I Elektrotech. Inf. Tech. 124(6), 180–185 (2007).
    [Crossref]
  17. K. Wilson and M. Enoch, “Optical communications for deep space missions,” IEEE Commun. Mag. 38(8), 134–139 (2000).
    [Crossref]
  18. S. Vasile, M. S. Ünlü, and J. Lipson, “Challenges of developing resonant cavity photon-counting detectors at 1064 nm,” Proc. SPIE 7587, 75870T (2010).
    [Crossref]
  19. H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
    [PubMed]
  20. Excelitas Technologies, Canada, http://www.excelitas.com/Downloads/DTS_SPCM-AQRH.pdf .
  21. I. D. Quantique, “Infrared single-photon counter,” http://www.photonicsolutions.co.uk/upfiles/id230-specs.pdf .
  22. M. A. Itzler, X. D. Jiang, R. Ben-Michael, K. Slomkowski, M. A. Krainak, S. Wu, and X. L. Sun, “InGaAsP/InP avalanche photodetectors for non-gated 1.06 µm photon-counting receivers,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications III, M. J. Hayduk, A. R. Pirich, P. J. Delfyett Jr., E. J. Donkor, J. P. Barrios, R. J. Bussjager, M. L. Fanto, R. L. Kaminski, G. Li, H. Mohseni, and E. W. Taylor, eds., Proc. SPIE 6572, 65720G (2007).
  23. Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).
  24. L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
    [Crossref] [PubMed]
  25. H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
    [Crossref]
  26. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
    [Crossref] [PubMed]
  27. G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
    [Crossref] [PubMed]
  28. M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
    [Crossref] [PubMed]
  29. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
    [Crossref] [PubMed]
  30. P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
    [Crossref] [PubMed]
  31. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  32. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
    [Crossref] [PubMed]
  33. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  34. H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33(7), 639–641 (2008).
    [Crossref] [PubMed]
  35. All pump power mentioned below is measured at the input port of the waveguide’s pigtail.

2017 (1)

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

2016 (2)

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
[Crossref] [PubMed]

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

2014 (1)

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (1)

2010 (1)

S. Vasile, M. S. Ünlü, and J. Lipson, “Challenges of developing resonant cavity photon-counting detectors at 1064 nm,” Proc. SPIE 7587, 75870T (2010).
[Crossref]

2009 (3)

L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17(16), 14395–14404 (2009).
[Crossref] [PubMed]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
[Crossref]

2008 (3)

2007 (3)

M. Pfennigbauer and A. Ullrich, “Applicability of single photon detection for laser radar,” E&I Elektrotech. Inf. Tech. 124(6), 180–185 (2007).
[Crossref]

M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55mum up-conversion photon-counting module,” Opt. Express 15(13), 8237–8242 (2007).
[Crossref] [PubMed]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

2005 (1)

2004 (2)

2003 (1)

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

2002 (1)

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

2000 (1)

K. Wilson and M. Enoch, “Optical communications for deep space missions,” IEEE Commun. Mag. 38(8), 134–139 (2000).
[Crossref]

1998 (1)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

1996 (2)

1993 (1)

1990 (1)

1985 (2)

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Asobe, M.

Baudoin, R.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Bethea, C. G.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

Bouyeron, L.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Cabrera, B.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

Campbell, J. C.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

Ceus, D.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Chen, J.

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Clarke, R. M.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

Cohen, L. G.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

Colling, P.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

Cova, S.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors,” Appl. Opt. 35(16), 2986–2996 (1996).
[Crossref] [PubMed]

Dai, Y. Q.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

Dautet, H.

Delage, L.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Deschamps, P.

Diamanti, E.

Dion, B.

Dong, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Enoch, M.

K. Wilson and M. Enoch, “Optical communications for deep space missions,” IEEE Commun. Mag. 38(8), 134–139 (2000).
[Crossref]

Fejer, M. M.

P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
[Crossref] [PubMed]

G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
[Crossref] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
[Crossref] [PubMed]

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[Crossref] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
[Crossref] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

Fujimura, M.

Ghioni, M.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Gisin, N.

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Gomes, J.-T.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Grossard, L.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Hamaguchi, H. O.

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

Herrmann, H.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Honjo, T.

Huang, J.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Kamada, H.

Kaminaka, S.

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

Kang, L.

Kim, Y. S.

Kohda, E.

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

Kumar, P.

Kuo, P. S.

Kurz, J. R.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9–10), 1433–1445 (2004).
[Crossref]

Lacaita, A.

Langrock, C.

Legré, M.

Levine, B. F.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

Li, H.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Li, M.

Li, Y.

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
[Crossref] [PubMed]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Li, Z.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lipson, J.

S. Vasile, M. S. Ünlü, and J. Lipson, “Challenges of developing resonant cavity photon-counting detectors at 1064 nm,” Proc. SPIE 7587, 75870T (2010).
[Crossref]

Liu, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Lovati, P.

Lv, C.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Ma, F.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

Ma, L.

Macgregor, A. D.

Macsween, D.

McIntyre, R. J.

Miller, A. J.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

Miyazawa, H.

Mora, A. D.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
[Crossref]

Morris, G. D.

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

Mukai, M.

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

Nam, S.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

Nishida, Y.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Pan, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Pan, J. W.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
[Crossref] [PubMed]

Parameswaran, K. R.

Pelc, J. S.

Pfennigbauer, M.

M. Pfennigbauer and A. Ullrich, “Applicability of single photon detection for laser radar,” E&I Elektrotech. Inf. Tech. 124(6), 180–185 (2007).
[Crossref]

Phillips, C. R.

Rech, I.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Reynaud, F.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Romani, R. W.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

Roussev, R. V.

Route, R. K.

Samori, C.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Shentu, G. L.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
[Crossref] [PubMed]

Slattery, O.

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sohler, W.

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Sun, Q. C.

Tadanaga, O.

Takesue, H.

Tang, X.

Thew, R.

Tokura, Y.

Tosi, A.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
[Crossref]

Trottier, C.

Ullrich, A.

M. Pfennigbauer and A. Ullrich, “Applicability of single photon detection for laser radar,” E&I Elektrotech. Inf. Tech. 124(6), 180–185 (2007).
[Crossref]

Ünlü, M. S.

S. Vasile, M. S. Ünlü, and J. Lipson, “Challenges of developing resonant cavity photon-counting detectors at 1064 nm,” Proc. SPIE 7587, 75870T (2010).
[Crossref]

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9–10), 1433–1445 (2004).
[Crossref]

Vasile, S.

S. Vasile, M. S. Ünlü, and J. Lipson, “Challenges of developing resonant cavity photon-counting detectors at 1064 nm,” Proc. SPIE 7587, 75870T (2010).
[Crossref]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wang, X. D.

Wang, Y.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Wang, Z.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Webb, P. P.

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wilson, K.

K. Wilson and M. Enoch, “Optical communications for deep space missions,” IEEE Commun. Mag. 38(8), 134–139 (2000).
[Crossref]

Wu, E.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Wu, P.

Xie, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

Xiong, Y.

Xue, L.

Yamamoto, Y.

Yamazaki, H.

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

You, L.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Zappa, F.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 µm: performance of commercially available InGaAs/lnP detectors,” Appl. Opt. 35(16), 2986–2996 (1996).
[Crossref] [PubMed]

Zbinden, H.

Zeng, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Zhai, D.

Zhang, H. T.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

Zhang, L.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
[Crossref] [PubMed]

Zhang, Q.

Zhang, S.

Zhang, W.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

Zheng, M. Y.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
[Crossref] [PubMed]

Zhou, F.

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (3)

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

E&I Elektrotech. Inf. Tech. (1)

M. Pfennigbauer and A. Ullrich, “Applicability of single photon detection for laser radar,” E&I Elektrotech. Inf. Tech. 124(6), 180–185 (2007).
[Crossref]

Electron. Lett. (1)

B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, and G. D. Morris, “Optical time domain reflectometry using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21(2), 83–84 (1985).
[Crossref]

IEEE Commun. Mag. (1)

K. Wilson and M. Enoch, “Optical communications for deep space missions,” IEEE Commun. Mag. 38(8), 134–139 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27(4), 1–4 (2017).

J. Mod. Opt. (2)

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2–3), 299–308 (2009).
[Crossref]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9–10), 1433–1445 (2004).
[Crossref]

Nat. Photonics (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

H. Kamada, M. Asobe, T. Honjo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33(7), 639–641 (2008).
[Crossref] [PubMed]

P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
[Crossref] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29(13), 1518–1520 (2004).
[Crossref] [PubMed]

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41(16), 3848–3851 (2016).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[Crossref] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J.-T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Vasile, M. S. Ünlü, and J. Lipson, “Challenges of developing resonant cavity photon-counting detectors at 1064 nm,” Proc. SPIE 7587, 75870T (2010).
[Crossref]

Radiat. Med. (1)

H. Yamazaki, S. Kaminaka, E. Kohda, M. Mukai, and H. O. Hamaguchi, “The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy,” Radiat. Med. 21(1), 1–6 (2003).
[PubMed]

Rev. Sci. Instrum. (1)

M. Y. Zheng, G. L. Shentu, F. Ma, F. Zhou, H. T. Zhang, Y. Q. Dai, X. Xie, Q. Zhang, and J. W. Pan, “Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count,” Rev. Sci. Instrum. 87(9), 093115 (2016).
[Crossref] [PubMed]

Other (4)

All pump power mentioned below is measured at the input port of the waveguide’s pigtail.

Excelitas Technologies, Canada, http://www.excelitas.com/Downloads/DTS_SPCM-AQRH.pdf .

I. D. Quantique, “Infrared single-photon counter,” http://www.photonicsolutions.co.uk/upfiles/id230-specs.pdf .

M. A. Itzler, X. D. Jiang, R. Ben-Michael, K. Slomkowski, M. A. Krainak, S. Wu, and X. L. Sun, “InGaAsP/InP avalanche photodetectors for non-gated 1.06 µm photon-counting receivers,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications III, M. J. Hayduk, A. R. Pirich, P. J. Delfyett Jr., E. J. Donkor, J. P. Barrios, R. J. Bussjager, M. L. Fanto, R. L. Kaminski, G. Li, H. Mohseni, and E. W. Taylor, eds., Proc. SPIE 6572, 65720G (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Tuning curve; (b) Measured SFG photon conversion efficiency (black diamonds) and theoretical fit (red line).

Fig. 2
Fig. 2

(a) Schematic diagram of the up-conversion SPD at 1.064 μm. The waveguide output is filtered by (b) a VBG and a BPF or (c) four BPFs. EDFA, erbium-doped fiber amplifier; WDM, wavelength division multiplexer; PC, polarization controller; VOA, variable optical attenuator; BS, beam splitter; PM, power meter; AL, aspheric lens; DM, dichroic mirror; VBG, volume Bragg grating; M, mirror; BPF, band-pass filter; Si APD, silicon avalanche photodiode; MM fiber, multimode fiber.

Fig. 3
Fig. 3

DE (red line, triangle) and NCR (blue line, square) versus pump power with two different filtering schemes. (a) VBG filtering, (b) BPFs filtering.

Tables (1)

Tables Icon

Table 1 Loss and throughput of the up-conversion SPD components