Abstract

A tomographic polarization analyzer is presented by polarization-mode-frequency mapping. Two orthogonal circularly polarized components of the unknown polarization state of light are converted to two orbital angular momentum (OAM) modes by a q-plate, and then the OAM modes are mapped to two frequencies by using time-varying spatial modulation. The polarization state of light can be retrieved by tomographic reconstruction of the temporal intensity signal collected by a photodetector. The time-varying spatial modulation can be achieved by either a programmable spatial device or a spinning object. Our method can directly measure the Jones matrix of light with high accuracy due to the high-volume time sampling.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [Crossref] [PubMed]
  2. R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland. sole distributors for the USA and Canada, Elsevier Science Publishing Co., Inc., 1987).
  3. J. D. Perreault, “Triple Wollaston-prism complete-Stokes imaging polarimeter,” Opt. Lett. 38(19), 3874–3877 (2013).
    [Crossref] [PubMed]
  4. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  5. A. Peinado, A. Turpin, A. Lizana, E. Fernández, J. Mompart, and J. Campos, “Conical refraction as a tool for polarization metrology,” Opt. Lett. 38(20), 4100–4103 (2013).
    [Crossref] [PubMed]
  6. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
    [Crossref] [PubMed]
  7. R. M. A. Azzam, “Division-of-amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of All Four Stokes Parameters of Light,” Optica Acta: International Journal of Optics 29(5), 685–689 (1982).
    [Crossref]
  8. E. Compain and B. Drevillon, “Broadband Division-of-Amplitude Polarimeter Based on Uncoated Prisms,” Appl. Opt. 37(25), 5938–5944 (1998).
    [Crossref] [PubMed]
  9. O. Morel, R. Seulin, and D. Fofi, “Handy method to calibrate division-of-amplitude polarimeters for the first three Stokes parameters,” Opt. Express 24(12), 13634–13646 (2016).
    [Crossref] [PubMed]
  10. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [Crossref] [PubMed]
  11. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
    [Crossref] [PubMed]
  12. T. Wakayama, Y. Otani, and T. Yoshizawa, “Axisymmetrical Mueller matrix polarimeter,” in 2009), 74610M–74610M–74618.
    [Crossref]
  13. I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18(6), 1673–1677 (2007).
    [Crossref]
  14. T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015).
    [Crossref] [PubMed]
  15. X. Meng, J. Li, D. Liu, and R. Zhu, “Fourier transform imaging spectropolarimeter using simultaneous polarization modulation,” Opt. Lett. 38(5), 778–780 (2013).
    [Crossref] [PubMed]
  16. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
    [Crossref] [PubMed]
  17. W.-L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
    [Crossref] [PubMed]
  18. F. Snik, T. Karalidi, and C. U. Keller, “Spectral modulation for full linear polarimetry,” Appl. Opt. 48(7), 1337–1346 (2009).
    [Crossref] [PubMed]
  19. J. P. Balthasar Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
    [Crossref]
  20. D. A. LeMaster and K. Hirakawa, “Improved microgrid arrangement for integrated imaging polarimeters,” Opt. Lett. 39(7), 1811–1814 (2014).
    [Crossref] [PubMed]
  21. S. Wei, Z. Yang, and M. Zhao, “Design of ultracompact polarimeters based on dielectric metasurfaces,” Opt. Lett. 42(8), 1580–1583 (2017).
    [Crossref] [PubMed]
  22. O. Arteaga, B. M. Maoz, S. Nichols, G. Markovich, and B. Kahr, “Complete polarimetry on the asymmetric transmission through subwavelength hole arrays,” Opt. Express 22(11), 13719–13732 (2014).
    [Crossref] [PubMed]
  23. X. Meng, J. Li, H. Song, and R. Zhu, “Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator,” Appl. Opt. 53(24), 5275–5282 (2014).
    [Crossref] [PubMed]
  24. S. Alali, T. Yang, and I. A. Vitkin, “Rapid time-gated polarimetric Stokes imaging using photoelastic modulators,” Opt. Lett. 38(16), 2997–3000 (2013).
    [Crossref] [PubMed]
  25. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
    [Crossref] [PubMed]
  26. G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections (Springer, 2009), pp. 64–68.
  27. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  28. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  29. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
    [Crossref] [PubMed]
  30. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38(18), 3546–3549 (2013).
    [Crossref] [PubMed]
  31. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  32. H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
    [Crossref] [PubMed]
  33. H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
    [Crossref]
  34. C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Direction-sensitive transverse velocity measurement by phase-modulated structured light beams,” Opt. Lett. 39(18), 5415–5418 (2014).
    [Crossref] [PubMed]
  35. M. P. J. Lavery, S. M. Barnett, F. C. Speirits, and M. J. Padgett, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body,” Optica 1(1), 1–4 (2014).
    [Crossref]
  36. M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
    [Crossref] [PubMed]
  37. A. Belmonte and J. P. Torres, “Optical Doppler shift with structured light,” Opt. Lett. 36(22), 4437–4439 (2011).
    [Crossref] [PubMed]
  38. C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Experimental detection of transverse particle movement with structured light,” Sci. Rep. 3(1), 2815 (2013).
    [Crossref] [PubMed]
  39. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [Crossref] [PubMed]
  40. S. Fu, C. Gao, Y. Shi, K. Dai, L. Zhong, and S. Zhang, “Generating polarization vortices by using helical beams and a Twyman Green interferometer,” Opt. Lett. 40(8), 1775–1778 (2015).
    [Crossref] [PubMed]

2017 (2)

S. Wei, Z. Yang, and M. Zhao, “Design of ultracompact polarimeters based on dielectric metasurfaces,” Opt. Lett. 42(8), 1580–1583 (2017).
[Crossref] [PubMed]

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (6)

2013 (7)

2011 (2)

A. Belmonte and J. P. Torres, “Optical Doppler shift with structured light,” Opt. Lett. 36(22), 4437–4439 (2011).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2010 (2)

2009 (2)

2007 (3)

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

2003 (1)

1998 (1)

1992 (2)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[Crossref] [PubMed]

1985 (1)

1982 (1)

R. M. A. Azzam, “Division-of-amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of All Four Stokes Parameters of Light,” Optica Acta: International Journal of Optics 29(5), 685–689 (1982).
[Crossref]

Alali, S.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Antonelli, M.-R.

Arteaga, O.

Azzam, R. M. A.

R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
[Crossref] [PubMed]

R. M. A. Azzam, “Division-of-amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of All Four Stokes Parameters of Light,” Optica Acta: International Journal of Optics 29(5), 685–689 (1982).
[Crossref]

Balakrishnan, K.

Balthasar Mueller, J. P.

Barnett, S. M.

M. P. J. Lavery, S. M. Barnett, F. C. Speirits, and M. J. Padgett, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body,” Optica 1(1), 1–4 (2014).
[Crossref]

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Belmonte, A.

Benali, A.

Bent, N.

Bolduc, E.

Boyd, R. W.

Brock, N.

Cai, X.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Campos, J.

Capasso, F.

Chen, X.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Chenault, D. B.

Compain, E.

Dai, K.

De Martino, A.

Dong, J.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

Drevillon, B.

Drévillon, B.

Engheta, N.

Fernández, E.

Fofi, D.

Fu, D.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

Fu, S.

Gao, C.

Garcia-Caurel, E.

Gayet, B.

Goldstein, D. L.

Gruev, V.

Heckenberg, N. R.

Hermosa, N.

C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Direction-sensitive transverse velocity measurement by phase-modulated structured light beams,” Opt. Lett. 39(18), 5415–5418 (2014).
[Crossref] [PubMed]

C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Experimental detection of transverse particle movement with structured light,” Sci. Rep. 3(1), 2815 (2013).
[Crossref] [PubMed]

Hirakawa, K.

Hsu, W.-L.

Ibn-Elhaj, M.

Jackel, S.

Kahr, B.

Karalidi, T.

Karimi, E.

Keller, C. U.

Kim, Y.-K.

LaCasse, C. F.

Laude, B.

Lavery, M. P.

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Lavery, M. P. J.

Lazarus, N.

LeMaster, D. A.

Leosson, K.

Li, F.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Li, J.

Li, Q.

Liang, R.

Liu, D.

Lizana, A.

Lumer, Y.

Machavariani, G.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Maoz, B. M.

Markovich, G.

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

McDuff, R.

Meir, A.

Meng, X.

Mompart, J.

Morel, O.

Moshe, I.

Mu, T.

Myhre, G.

Nichols, S.

Nishiyama, I.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18(6), 1673–1677 (2007).
[Crossref]

Novikova, T.

Ortu, A.

Otani, Y.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18(6), 1673–1677 (2007).
[Crossref]

Padgett, M. J.

M. P. J. Lavery, S. M. Barnett, F. C. Speirits, and M. J. Padgett, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body,” Optica 1(1), 1–4 (2014).
[Crossref]

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Pau, S.

Peinado, A.

Perkins, R.

Perreault, J. D.

Pierangelo, A.

Ratliff, B. M.

Rosales-Guzmán, C.

C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Direction-sensitive transverse velocity measurement by phase-modulated structured light beams,” Opt. Lett. 39(18), 5415–5418 (2014).
[Crossref] [PubMed]

C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Experimental detection of transverse particle movement with structured light,” Sci. Rep. 3(1), 2815 (2013).
[Crossref] [PubMed]

Santamato, E.

Seulin, R.

Shaw, J. A.

Shi, Y.

Smith, C. P.

Snik, F.

Song, H.

Speirits, F. C.

M. P. J. Lavery, S. M. Barnett, F. C. Speirits, and M. J. Padgett, “Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body,” Optica 1(1), 1–4 (2014).
[Crossref]

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Spreeuw, R. J.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Torres, J. P.

Turpin, A.

Tyo, J. S.

Umeda, N.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18(6), 1673–1677 (2007).
[Crossref]

Validire, P.

Van der Spiegel, J.

Vitkin, I. A.

Wei, S.

White, A. G.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yang, T.

Yang, Z.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yoshida, N.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18(6), 1673–1677 (2007).
[Crossref]

Zhang, C.

Zhang, P.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

Zhang, S.

Zhang, X.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

Zhao, M.

Zhong, L.

Zhou, H.

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

Zhu, R.

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Opt. (4)

Light Sci. Appl. (1)

H. Zhou, D. Fu, J. Dong, P. Zhang, X. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Meas. Sci. Technol. (1)

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18(6), 1673–1677 (2007).
[Crossref]

Opt. Express (8)

T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015).
[Crossref] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[Crossref] [PubMed]

R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18(25), 25815–25824 (2010).
[Crossref] [PubMed]

W.-L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[Crossref] [PubMed]

O. Morel, R. Seulin, and D. Fofi, “Handy method to calibrate division-of-amplitude polarimeters for the first three Stokes parameters,” Opt. Express 24(12), 13634–13646 (2016).
[Crossref] [PubMed]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[Crossref] [PubMed]

O. Arteaga, B. M. Maoz, S. Nichols, G. Markovich, and B. Kahr, “Complete polarimetry on the asymmetric transmission through subwavelength hole arrays,” Opt. Express 22(11), 13719–13732 (2014).
[Crossref] [PubMed]

H. Zhou, D. Fu, J. Dong, P. Zhang, and X. Zhang, “Theoretical analysis and experimental verification on optical rotational Doppler effect,” Opt. Express 24(9), 10050–10056 (2016).
[Crossref] [PubMed]

Opt. Lett. (15)

A. Belmonte and J. P. Torres, “Optical Doppler shift with structured light,” Opt. Lett. 36(22), 4437–4439 (2011).
[Crossref] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

S. Fu, C. Gao, Y. Shi, K. Dai, L. Zhong, and S. Zhang, “Generating polarization vortices by using helical beams and a Twyman Green interferometer,” Opt. Lett. 40(8), 1775–1778 (2015).
[Crossref] [PubMed]

J. D. Perreault, “Triple Wollaston-prism complete-Stokes imaging polarimeter,” Opt. Lett. 38(19), 3874–3877 (2013).
[Crossref] [PubMed]

D. A. LeMaster and K. Hirakawa, “Improved microgrid arrangement for integrated imaging polarimeters,” Opt. Lett. 39(7), 1811–1814 (2014).
[Crossref] [PubMed]

S. Wei, Z. Yang, and M. Zhao, “Design of ultracompact polarimeters based on dielectric metasurfaces,” Opt. Lett. 42(8), 1580–1583 (2017).
[Crossref] [PubMed]

S. Alali, T. Yang, and I. A. Vitkin, “Rapid time-gated polarimetric Stokes imaging using photoelastic modulators,” Opt. Lett. 38(16), 2997–3000 (2013).
[Crossref] [PubMed]

A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[Crossref] [PubMed]

C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Direction-sensitive transverse velocity measurement by phase-modulated structured light beams,” Opt. Lett. 39(18), 5415–5418 (2014).
[Crossref] [PubMed]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[Crossref] [PubMed]

E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38(18), 3546–3549 (2013).
[Crossref] [PubMed]

J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34(20), 3187–3189 (2009).
[Crossref] [PubMed]

A. Peinado, A. Turpin, A. Lizana, E. Fernández, J. Mompart, and J. Campos, “Conical refraction as a tool for polarization metrology,” Opt. Lett. 38(20), 4100–4103 (2013).
[Crossref] [PubMed]

R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
[Crossref] [PubMed]

X. Meng, J. Li, D. Liu, and R. Zhu, “Fourier transform imaging spectropolarimeter using simultaneous polarization modulation,” Opt. Lett. 38(5), 778–780 (2013).
[Crossref] [PubMed]

Optica (2)

Optica Acta: International Journal of Optics (1)

R. M. A. Azzam, “Division-of-amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of All Four Stokes Parameters of Light,” Optica Acta: International Journal of Optics 29(5), 685–689 (1982).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Rosales-Guzmán, N. Hermosa, A. Belmonte, and J. P. Torres, “Experimental detection of transverse particle movement with structured light,” Sci. Rep. 3(1), 2815 (2013).
[Crossref] [PubMed]

Science (1)

M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Other (3)

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections (Springer, 2009), pp. 64–68.

T. Wakayama, Y. Otani, and T. Yoshizawa, “Axisymmetrical Mueller matrix polarimeter,” in 2009), 74610M–74610M–74618.
[Crossref]

R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light (North-Holland. sole distributors for the USA and Canada, Elsevier Science Publishing Co., Inc., 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the polarization analyzer. (b) Phase masks of the modulation function dependent on time.

Fig. 2
Fig. 2

Experimental setup. Polarization preparation: preparing the test light with various polarization states. Polarization measurement: measuring the input polarization state. Pattern capture: capturing the light patterns.

Fig. 3
Fig. 3

(a, c) The intensity patterns of the converted OAM modes when an RCP or LCP light is incident. (b, d) The corresponding interference patterns with the reference mode (OAM4).

Fig. 4
Fig. 4

(a) The received signal by the PD and (b) the corresponding harmonic distribution when a RCP light is incident. (c, d) The results for LCP light. (e, f) The results for a 45° linearly polarized light.

Fig. 5
Fig. 5

(a) The measured amplitude ratio and (b) the phase difference for different input polarization states.

Fig. 6
Fig. 6

(a) Schematic diagram and (b) Experimental setup of the polarization analyzer by using a spinning object.

Fig. 7
Fig. 7

(a) The received signal by the PD and (b) the corresponding harmonic distribution when an RCP light is incident for the polarization analyzer by using a spinning object. (c, d) The results for LCP light. (e, f) The results for a −45° linearly polarized light.

Fig. 8
Fig. 8

(a) The measured amplitude ratio and (a) the phase difference for different input polarizations for the polarization analyzer by using a spinning object.

Tables (1)

Tables Icon

Table 1 Comparisons of the two schemes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E in =a[ 1 i ]+b[ 1 i ],
E o1 =( cos(2β) sin(2β) sin(2β) cos(2β) ) E in =aexp(i2β)[ 1 i ]+bexp(i2β)[ 1 i ].
M(θ,t)= nN A n exp(inθ) [ exp(inΩt)+exp(imΩt) ].
E o2 =aexp(iΩt)+bexp(iΩt)+Bexp(imΩt).
I= | a | 2 + | b | 2 + | B | 2 +2| ab |cos[2Ωt+Λ(a b * )]+ 2| aB |cos[ (m1)Ωt+Λ( a * B) ]+2| bB |cos[ (m+1)Ωt+Λ( b * B) ],
M(θ,t)= nN A n exp(inθ)exp(inΩt) = nN A n exp[ in(θΩt) ]

Metrics