Abstract

The correlation of molecular excitation and emission events provides a powerful multidimensional spectroscopy tool, by relating transitions from electronic ground and excited states through two-dimensional excitation-emission maps. Here we present a compact, fast and versatile Fourier-transform spectrometer, combining absorption and excitation-emission fluorescence spectroscopy in the visible. We generate phase-locked excitation pulse pairs via an inherently stable birefringent wedge-based common-path interferometer, retaining all the advantages of Fourier-transform spectroscopy but avoiding active stabilization or auxiliary tracking beams. We employ both coherent and incoherent excitation sources on dye molecules in solution, with data acquisition times in the range of seconds and minutes, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fourier fluorescence spectrometer for excitation emission matrix measurement

Leilei Peng, Joseph A. Gardecki, Brett E. Bouma, and Guillermo J. Tearney
Opt. Express 16(14) 10493-10500 (2008)

Fourier transform spectroscopy in the vibrational fingerprint region with a birefringent interferometer

J. Réhault, R. Borrego-Varillas, A. Oriana, C. Manzoni, C. P. Hauri, J. Helbing, and G. Cerullo
Opt. Express 25(4) 4403-4413 (2017)

Scanning Fourier transform spectrometer in the visible range based on birefringent wedges

Aurelio Oriana, Julien Réhault, Fabrizio Preda, Dario Polli, and Giulio Cerullo
J. Opt. Soc. Am. A 33(7) 1415-1420 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2007).
  2. N. J. Reilly, T. W. Schmidt, and S. H. Kable, “Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments,” J. Phys. Chem. A 110(45), 12355–12359 (2006).
    [Crossref] [PubMed]
  3. J. R. Gascooke, U. N. Alexander, and W. D. Lawrance, “Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules,” J. Chem. Phys. 134(18), 184301 (2011).
    [Crossref] [PubMed]
  4. Á. Andrade-Eiroa, M. Canle, and V. Cerdá, “Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II,” Appl. Spectrosc. Rev. 48(2), 77–141 (2013).
    [Crossref]
  5. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
    [Crossref]
  6. R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular Fluorescence Excitation-Emission Matrices Relevant to Tissue Spectroscopy,” Photochem. Photobiol. 78(4), 384–392 (2003).
    [Crossref] [PubMed]
  7. S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
    [Crossref] [PubMed]
  8. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
    [Crossref] [PubMed]
  9. J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
    [Crossref] [PubMed]
  10. B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
    [Crossref] [PubMed]
  11. J. G. Hirschberg, G. Vereb, C. K. Meyer, A. K. Kirsch, E. Kohen, and T. M. Jovin, “Interferometric measurement of fluorescence excitation spectra,” Appl. Opt. 37(10), 1953–1957 (1998).
    [Crossref] [PubMed]
  12. H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
    [Crossref] [PubMed]
  13. L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7, 10411 (2016).
    [Crossref] [PubMed]
  14. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  15. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).
  16. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  17. J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
    [Crossref] [PubMed]
  18. J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
    [Crossref] [PubMed]
  19. R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
    [Crossref] [PubMed]
  20. A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
    [Crossref] [PubMed]
  21. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
    [Crossref]
  22. P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 268–312 (1960).
    [Crossref]
  23. J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81(1), 212–213 (2005).
    [Crossref] [PubMed]
  24. J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
    [Crossref] [PubMed]
  25. L. Peng, J. T. Motz, R. W. Redmond, B. E. Bouma, and G. J. Tearney, “Fourier transform emission lifetime spectrometer,” Opt. Lett. 32(4), 421–423 (2007).
    [Crossref] [PubMed]

2017 (1)

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

2016 (4)

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7, 10411 (2016).
[Crossref] [PubMed]

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

2015 (2)

J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
[Crossref] [PubMed]

H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
[Crossref] [PubMed]

2014 (2)

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

2013 (1)

Á. Andrade-Eiroa, M. Canle, and V. Cerdá, “Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II,” Appl. Spectrosc. Rev. 48(2), 77–141 (2013).
[Crossref]

2012 (1)

2011 (1)

J. R. Gascooke, U. N. Alexander, and W. D. Lawrance, “Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules,” J. Chem. Phys. 134(18), 184301 (2011).
[Crossref] [PubMed]

2007 (1)

2006 (2)

N. J. Reilly, T. W. Schmidt, and S. H. Kable, “Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments,” J. Phys. Chem. A 110(45), 12355–12359 (2006).
[Crossref] [PubMed]

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

2005 (1)

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81(1), 212–213 (2005).
[Crossref] [PubMed]

2003 (1)

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular Fluorescence Excitation-Emission Matrices Relevant to Tissue Spectroscopy,” Photochem. Photobiol. 78(4), 384–392 (2003).
[Crossref] [PubMed]

2000 (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

1998 (1)

1996 (1)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
[Crossref]

1992 (1)

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

1960 (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 268–312 (1960).
[Crossref]

Alexander, U. N.

J. R. Gascooke, U. N. Alexander, and W. D. Lawrance, “Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules,” J. Chem. Phys. 134(18), 184301 (2011).
[Crossref] [PubMed]

Andersson, H.

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular Fluorescence Excitation-Emission Matrices Relevant to Tissue Spectroscopy,” Photochem. Photobiol. 78(4), 384–392 (2003).
[Crossref] [PubMed]

Andrade-Eiroa, Á.

Á. Andrade-Eiroa, M. Canle, and V. Cerdá, “Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II,” Appl. Spectrosc. Rev. 48(2), 77–141 (2013).
[Crossref]

Anzai, H.

H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
[Crossref] [PubMed]

Baker, T.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Borrego-Varillas, R.

Boudreaux, C. W.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Bouma, B. E.

Brida, D.

Bro, R.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Buchvarov, I.

Canle, M.

Á. Andrade-Eiroa, M. Canle, and V. Cerdá, “Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II,” Appl. Spectrosc. Rev. 48(2), 77–141 (2013).
[Crossref]

Cerdá, V.

Á. Andrade-Eiroa, M. Canle, and V. Cerdá, “Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II,” Appl. Spectrosc. Rev. 48(2), 77–141 (2013).
[Crossref]

Cerullo, G.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

Christensen, J.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Christensen, R. L.

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Ciardi, G.

Coble, P. G.

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
[Crossref]

Crisafi, F.

DaCosta, R. S.

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular Fluorescence Excitation-Emission Matrices Relevant to Tissue Spectroscopy,” Photochem. Photobiol. 78(4), 384–392 (2003).
[Crossref] [PubMed]

DeCoster, B.

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Dixon, J. M.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81(1), 212–213 (2005).
[Crossref] [PubMed]

Engelsen, S. B.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Farhoosh, R.

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Favreau, P. F.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Ferrari, A. C.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Frank, H. A.

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Fuyuki, M.

H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
[Crossref] [PubMed]

Ganzer, L.

Gascooke, J. R.

J. R. Gascooke, U. N. Alexander, and W. D. Lawrance, “Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules,” J. Chem. Phys. 134(18), 184301 (2011).
[Crossref] [PubMed]

Gebhard, R.

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Gellings, E.

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7, 10411 (2016).
[Crossref] [PubMed]

Helbing, J.

Hirschberg, J. G.

Jacquinot, P.

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 268–312 (1960).
[Crossref]

Joshi, N. K.

H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
[Crossref] [PubMed]

Jovin, T. M.

Kable, S. H.

N. J. Reilly, T. W. Schmidt, and S. H. Kable, “Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments,” J. Phys. Chem. A 110(45), 12355–12359 (2006).
[Crossref] [PubMed]

Kirsch, A. K.

Kohen, E.

Kumar, V.

Lawrance, W. D.

J. R. Gascooke, U. N. Alexander, and W. D. Lawrance, “Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules,” J. Chem. Phys. 134(18), 184301 (2011).
[Crossref] [PubMed]

Leavesley, S. J.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Lindsey, J. S.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81(1), 212–213 (2005).
[Crossref] [PubMed]

Lombardi, L.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Lopez, C.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Lugtenburg, J.

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Maiuri, M.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

Manzoni, C.

Marangoni, M.

Meyer, C. K.

Motz, J. T.

Nørgaard, L.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Oriana, A.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

R. Borrego-Varillas, A. Oriana, L. Ganzer, A. Trifonov, I. Buchvarov, C. Manzoni, and G. Cerullo, “Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line,” Opt. Express 24(25), 28491–28499 (2016).
[Crossref] [PubMed]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Peng, L.

Piatkowski, L.

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7, 10411 (2016).
[Crossref] [PubMed]

Polli, D.

Preda, F.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

Redmond, R. W.

Réhault, J.

Reilly, N. J.

N. J. Reilly, T. W. Schmidt, and S. H. Kable, “Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments,” J. Phys. Chem. A 110(45), 12355–12359 (2006).
[Crossref] [PubMed]

Rich, T. C.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Rider, P. F.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Schmidt, T. W.

N. J. Reilly, T. W. Schmidt, and S. H. Kable, “Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments,” J. Phys. Chem. A 110(45), 12355–12359 (2006).
[Crossref] [PubMed]

Taniguchi, M.

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81(1), 212–213 (2005).
[Crossref] [PubMed]

Tearney, G. J.

Trifonov, A.

van Hulst, N. F.

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7, 10411 (2016).
[Crossref] [PubMed]

Vereb, G.

Wada, A.

H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
[Crossref] [PubMed]

Walters, M.

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

Wilson, B. C.

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular Fluorescence Excitation-Emission Matrices Relevant to Tissue Spectroscopy,” Photochem. Photobiol. 78(4), 384–392 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. Rev. (1)

Á. Andrade-Eiroa, M. Canle, and V. Cerdá, “Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review II,” Appl. Spectrosc. Rev. 48(2), 77–141 (2013).
[Crossref]

Biochim. Biophys. Acta (1)

B. DeCoster, R. L. Christensen, R. Gebhard, J. Lugtenburg, R. Farhoosh, and H. A. Frank, “Low-lying electronic states of carotenoids,” Biochim. Biophys. Acta 1102(1), 107–114 (1992).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

J. Biomed. Opt. (1)

S. J. Leavesley, M. Walters, C. Lopez, T. Baker, P. F. Favreau, T. C. Rich, P. F. Rider, and C. W. Boudreaux, “Hyperspectral imaging fluorescence excitation scanning for colon cancer detection,” J. Biomed. Opt. 21(10), 104003 (2016).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. R. Gascooke, U. N. Alexander, and W. D. Lawrance, “Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules,” J. Chem. Phys. 134(18), 184301 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. A (1)

N. J. Reilly, T. W. Schmidt, and S. H. Kable, “Two-dimensional fluorescence (excitation/emission) spectroscopy as a probe of complex chemical environments,” J. Phys. Chem. A 110(45), 12355–12359 (2006).
[Crossref] [PubMed]

Mar. Chem. (1)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
[Crossref]

Nat. Commun. (1)

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7, 10411 (2016).
[Crossref] [PubMed]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Photochem. Photobiol. (2)

R. S. DaCosta, H. Andersson, and B. C. Wilson, “Molecular Fluorescence Excitation-Emission Matrices Relevant to Tissue Spectroscopy,” Photochem. Photobiol. 78(4), 384–392 (2003).
[Crossref] [PubMed]

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol. 81(1), 212–213 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 268–312 (1960).
[Crossref]

Rev. Sci. Instrum. (2)

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

H. Anzai, N. K. Joshi, M. Fuyuki, and A. Wada, “Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer,” Rev. Sci. Instrum. 86(1), 014101 (2015).
[Crossref] [PubMed]

Other (3)

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used for combined EEM and absorption measurements. Pol1, Pol2: polarizers; PD1, PD2: photodiodes. Black arrow indicates the direction of movement of the translating wedge. The yellow arrow and dots indicate the orientations of the optical axes of the birefringent optical elements.

Fig. 2
Fig. 2

(a) Zoom of the 2D linear autocorrelation, as a function of wedge position and emission wavelength, of the supercontinuum fiber laser. (b) 2D map as a function of spatial frequency (expressed in mm−1) and emission wavelength, obtained by computing the FT of (a) as a function of wedge position, before calibration. Inset: calibrated spectrum as a function of excitation wavelength corresponding to the vertical cut in (b), showing a resolution of 6 nm.

Fig. 3
Fig. 3

(a) Normalized absorption spectrum of the dye Nile Blue in methanol solution, measured with the TWINS setup (solid yellow line) and with a commercial spectrophotometer (dashed black line), together with the fluorescence excitation spectrum (blue squares, resolution reduced for clarity), obtained as a vertical cut of the EEM map of Fig. 3(b) for the emission wavelength λ2 = 660 nm. Fluorescence spectrum of Nile Blue in methanol solution, after excitation at 625 nm (dotted blue line). Spectrum of the supercontinuum fiber laser (light green area). (b) 2D EEM map of Nile Blue in methanol obtained with a total wedge excursion of 4mm, 800 spatial steps and 40 s acquisition time.

Fig. 4
Fig. 4

(a) Zoom of the 2D EEM map of the mixture of the dyes Nile Blue (0.1 OD) and IR820 (0.45 OD) as a function of emission wavelength and wedge position Δx. The map was acquired in 13 minutes using 800 spatial steps and a 4 mm wedge excursion. (b) 2D EEM map as a function of excitation and emission wavelengths, obtained by performing the FT of the map in (a) with respect to x and applying the spectral calibration function.

Fig. 5
Fig. 5

(a) 2D EEM map for a mixture of Rhodamine B (0.35 OD) and Nile Blue (0.45 OD) dyes in Methanol measured with a white-light LED. The map is obtained with 1-mm wedge excursion, 200 spatial steps and total 16-minutes acquisition time. (b) Absorption spectrum of the dyes mixture (light green area) together with horizontal cuts of the EEM map (blue and red solid lines), corresponding to 523nm and 590nm excitation wavelength, in resonance mainly with Rhodamine B and Nile Blue, respectively. Blue and orange circles are fluorescence spectra taken from the literature [23].

Metrics