Abstract

We experimentally demonstrated focusing of light with orbital angular momentum (OAM) using an 8-element circular array of linear antennas. A spiral phase plate was used to generate a vortex beam with an OAM of ħ in the terahertz (THz) frequency region. We used THz near-field microscope to directly measure the phase vortex. A beam profile with a center dark spot and 2π phase rotation was observed in the small center gap region of the circular array antenna after the vortex beam excitation. The beam size is reduced by a factor of 3.4 ± 0.2. Half-wave resonance of the antenna element is responsible for the focusing function, indicating the scalability of this method to other frequency regions. This method will enable deep subwavelength focusing of light with OAM and eliminate the obstacle for the observation of the dipole forbidden transition with finite OAM of the vortex beam.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  3. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [Crossref] [PubMed]
  4. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  5. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  6. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
    [Crossref] [PubMed]
  7. R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41(9), 095001 (2008).
    [Crossref]
  8. G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B 79(15), 155450 (2009).
    [Crossref]
  9. K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
    [Crossref] [PubMed]
  10. H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: printing laser profiles on magnets,” Phys. Rev. B 95(5), 054421 (2017).
    [Crossref]
  11. A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).
    [Crossref] [PubMed]
  12. R. W. Heeres and V. Zwiller, “Subwavelength focusing of light with orbital angular momentum,” Nano Lett. 14(8), 4598–4601 (2014).
    [Crossref] [PubMed]
  13. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
    [Crossref] [PubMed]
  14. F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
    [Crossref]
  15. F. Blanchard and K. Tanaka, “Improving time and space resolution in electro-optic sampling for near-field terahertz imaging,” Opt. Lett. 41(20), 4645–4648 (2016).
    [Crossref] [PubMed]
  16. J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  17. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  18. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
    [Crossref]
  19. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
    [Crossref]
  20. K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
    [Crossref]
  21. K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
    [Crossref] [PubMed]
  22. A. Yariv, Quantum Electronics, 3rd ed. (John Wiley and Sons, 1988).
  23. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21(17), 20230–20239 (2013).
    [Crossref] [PubMed]
  24. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]

2017 (1)

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: printing laser profiles on magnets,” Phys. Rev. B 95(5), 054421 (2017).
[Crossref]

2016 (2)

F. Blanchard and K. Tanaka, “Improving time and space resolution in electro-optic sampling for near-field terahertz imaging,” Opt. Lett. 41(20), 4645–4648 (2016).
[Crossref] [PubMed]

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

2015 (1)

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

2014 (2)

R. W. Heeres and V. Zwiller, “Subwavelength focusing of light with orbital angular momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
[Crossref]

2013 (3)

J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21(17), 20230–20239 (2013).
[Crossref] [PubMed]

F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

2011 (3)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

2009 (1)

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B 79(15), 155450 (2009).
[Crossref]

2008 (1)

R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41(9), 095001 (2008).
[Crossref]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2006 (2)

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).
[Crossref] [PubMed]

2003 (1)

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

2002 (2)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

1996 (1)

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Akiba, T.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
[Crossref]

Alexandrescu, A.

A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).
[Crossref] [PubMed]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Almási, G.

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Blanchard, F.

F. Blanchard and K. Tanaka, “Improving time and space resolution in electro-optic sampling for near-field terahertz imaging,” Opt. Lett. 41(20), 4645–4648 (2016).
[Crossref] [PubMed]

F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
[Crossref]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Cladé, P.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Cojoc, D.

A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).
[Crossref] [PubMed]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Di Fabrizio, E.

A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).
[Crossref] [PubMed]

Doi, A.

F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
[Crossref]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Feng, S.

Fujita, H.

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: printing laser profiles on magnets,” Phys. Rev. B 95(5), 054421 (2017).
[Crossref]

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Grinter, R.

R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41(9), 095001 (2008).
[Crossref]

He, J.

Hebling, J.

Heeres, R. W.

R. W. Heeres and V. Zwiller, “Subwavelength focusing of light with orbital angular momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[Crossref] [PubMed]

Hu, D.

Kadoya, Y.

Kan, Q.

Kang, B. J.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

Kim, W. T.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

Kozma, I.

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

Kuhl, J.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Miyamoto, K.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Niinomi, H.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

Nomura, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Omatsu, T.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Quinteiro, G. F.

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B 79(15), 155450 (2009).
[Crossref]

Robertson, D. A.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

Rotermund, F.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Sakai, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Sasaki, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Sasaki, Y.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

Sato, M.

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: printing laser profiles on magnets,” Phys. Rev. B 95(5), 054421 (2017).
[Crossref]

Smith, G. M.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Suizu, K.

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
[Crossref]

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tamborenea, P. I.

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B 79(15), 155450 (2009).
[Crossref]

Tanaka, H.

Tanaka, K.

F. Blanchard and K. Tanaka, “Improving time and space resolution in electro-optic sampling for near-field terahertz imaging,” Opt. Lett. 41(20), 4645–4648 (2016).
[Crossref] [PubMed]

F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
[Crossref]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Tanaka, T.

F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
[Crossref]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express 19(9), 8277–8284 (2011).
[Crossref] [PubMed]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Turnbull, G. A.

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

Wang, X.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yamamoto, T.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Ye, J.

Zhang, Y.

Zwiller, V.

R. W. Heeres and V. Zwiller, “Subwavelength focusing of light with orbital angular momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Annu. Rev. Mater. Res. (1)

F. Blanchard, A. Doi, T. Tanaka, and K. Tanaka, “Real-time, subwavelength terahertz imaging,” Annu. Rev. Mater. Res. 43(1), 237–259 (2013).
[Crossref]

Appl. Phys. Lett. (2)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104(26), 261104 (2014).
[Crossref]

J. Phys. B (1)

R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41(9), 095001 (2008).
[Crossref]

Nano Lett. (1)

R. W. Heeres and V. Zwiller, “Subwavelength focusing of light with orbital angular momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

Opt. Commun. (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5), 321–327 (1994).
[Crossref]

G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127(4), 183–188 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. B (2)

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B 79(15), 155450 (2009).
[Crossref]

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: printing laser profiles on magnets,” Phys. Rev. B 95(5), 054421 (2017).
[Crossref]

Phys. Rev. Lett. (6)

A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Sci. Rep. (2)

K. Miyamoto, B. J. Kang, W. T. Kim, Y. Sasaki, H. Niinomi, K. Suizu, F. Rotermund, and T. Omatsu, “Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate,” Sci. Rep. 6(1), 38880 (2016).
[Crossref] [PubMed]

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Other (1)

A. Yariv, Quantum Electronics, 3rd ed. (John Wiley and Sons, 1988).

Supplementary Material (4)

NameDescription
» Visualization 1: MOV (2898 KB)      (updated) Electric field distribution of the Gaussian beam measured in time-domain.
» Visualization 2: MOV (2481 KB)      Electric field distribution of the vortex beam measured in time-domain.
» Visualization 3: MOV (3046 KB)      Near-field distribution around the ring array antenna excited by the Gaussian beam.
» Visualization 4: MOV (2846 KB)      Near-field distribution around the ring array antenna excited by the vortex beam.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. The magnified view in the upper right is not drawn to scale. THz pulses are focused to the circular antenna by two lenses (Lens1: Tsurupica lens, f = 50 mm. Lens2: Silicon bullet lens). The top and bottom surfaces of the EO crystal substrate are coated with high-reflection (HR) and anti-reflection film (3 μm thick) for the probe pulse at 780 nm, respectively. The circular array antennas are fabricated directly on the top surface of the EO substrate. An x-cut LiNbO3 with the thickness of 20 μm is used to compensate for the birefringence of the EO crystal. BS: beam splitter, SP: short pass filter, LP: long pass filter, QWP: quarter wave plate, PBS: polarizing beam splitter. (b) Structure of the circular array antenna. The vector e0 shows the polarization direction of the incident THz pulse. (c) Dimensions of the antenna element. The blue sinusoidal wave represents half-wave resonance.

Fig. 2
Fig. 2

(a) Time-domain EO images of the Gaussian beam (see Visualization 1) and (b) vortex beam (see Visualization 2). The black arrow represents the direction of the polarization. (c) Electric field waveform at the center of the Gaussian beam. (d) Frequency spectrum of the waveform shown in (c).

Fig. 3
Fig. 3

(a) Frequency-domain intensity and (b) phase images of the Gaussian beam at 0.6 THz. Each pixel is plotted by taking the 0.6 THz Fourier component of the waveform at each pixel of the microscope field (such as the one shown in Fig. 2(c)). The intensity images are normalized by the maximum value. (c) The azimuthal angle dependence of the phase of the Gaussian beam. The data points (black open circle) are taken along the dotted circle with the radius of 25 μm shown in (b). (d) Frequency-domain intensity and (e) phase images of the vortex beam at 0.6 THz. (f) The azimuthal angle dependence of the phase of the vortex beam. The data points (black open circle) are taken along the dotted circle with the radius of 25 μm shown in (e). The origin of the horizontal axis is chosen so that the phase starts from -π. The red open circles in (c) and (f) are taken from Fig. 4(e) and Fig. 5(c), along the white circle with the same radius of 25 μm, respectively.

Fig. 4
Fig. 4

(a) Time-domain EO images of the near-field distribution around the circular array antenna illuminated by the Gaussian beam (see Visualization 3). The circular array antenna with the inner radius of 30 μm is used and shown by the dotted lines. The color scales are optimized at each frame for the sake of clarity. (b) The electric field waveform at the center of the array antenna (white cross in (a)), showing the damped sinusoidal oscillation. (c) The power spectrum of the waveform enclosed by the dashed line in (b) (after 3.54 ps). A clear peak at 0.6 THz is seen. (d) Intensity and (e) phase image at 0.6 THz. The radius of the white circle in (e) is 25 μm. The Fourier transformation is performed using the time-domain data after 3.54 ps.

Fig. 5
Fig. 5

(a) Snapshots of the near-field distribution around the circular array antenna (dotted lines) illuminated by the vortex beam (see Visualization 4). The color scales are optimized at each frame for the sake of clarity. (b) Intensity and (c) phase image at 0.6 THz, showing an intensity null at the center (white cross) and the 2π phase rotation. The figures in the upper right of (b) and (c) show enlarged images of the region enclosed by the corresponding dashed square. Unfortunately, we could not observe the phases around the outer edges of the gold bars due to the limited microscope view field. The radius of the white circle in (c) is 25 μm. The Fourier transformation is performed using the time-domain data after the incident THz pulse has gone through the sample. The black and white crosses in the figures indicate the same center point.

Metrics