Abstract

We propose a new approach to developing of graded-index chalcogenide fibers. Since chalcogenide glasses are incompatible with current vapor deposition techniques, the arbitrary refractive index gradient is obtained by means of core nanostructurization by the effective medium approach. We study the influence of graded-index core profile and the core diameter on the fiber dispersion characteristics. Flat, normal dispersion profiles across the mid-infrared transmission window of the assumed glasses are easily obtained for the investigated core nanostructure layouts. Nonlinear propagation simulations enable to expect 3.5-8.5 µm spectrum of coherent, pulse preserving supercontinuum. Fabrication feasibility of the proposed fiber is also discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers

Xia Li, Wei Chen, Tianfeng Xue, Juanjuan Gao, Weiqing Gao, Lili Hu, and Meisong Liao
Opt. Express 22(20) 24179-24191 (2014)

Large elliptical nanostructured gradient-index microlens

Ryszard Buczynski, Adam Filipkowski, Andrew J. Waddie, Bernard Piechal, Jedrzej Nowosielski, Dariusz Pysz, Ryszard Stepien, and Mohammad R. Taghizadeh
Appl. Opt. 55(1) 89-94 (2016)

Large diameter nanostructured gradient index lens

Jedrzej Nowosielski, Ryszard Buczynski, Andrew J. Waddie, Adam Filipkowski, Dariusz Pysz, Aongus McCarthy, Ryszard Stepien, and Mohammad R. Taghizadeh
Opt. Express 20(11) 11767-11777 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
    [Crossref] [PubMed]
  2. P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
    [Crossref] [PubMed]
  3. C. Dunsby and P. M. W. French, “Biophotonics applications of supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, ed. (Cambridge University, 2010).
  4. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  5. V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  6. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
    [Crossref]
  7. T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
    [Crossref]
  8. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  9. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  10. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref] [PubMed]
  11. T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
    [Crossref] [PubMed]
  12. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
    [Crossref] [PubMed]
  13. K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
    [Crossref]
  14. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
    [Crossref]
  15. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
    [Crossref] [PubMed]
  16. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
    [Crossref]
  17. IRflex, www.irflex.com , [Accessed: 28.02.2017].
  18. SelenOptics, “Microstuctured Mid-infrared Optical Fibers,” http://selenoptics-web.wixsite.com/optics , [Accessed: 28.02.2017].
  19. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
    [Crossref] [PubMed]
  20. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  21. B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
    [Crossref]
  22. A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook, (Academic Press, 2007).
  23. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
    [Crossref] [PubMed]
  24. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  25. C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
    [Crossref]
  26. R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
    [Crossref] [PubMed]
  27. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [Crossref] [PubMed]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (London: Academic Press, 2001).
  29. S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).
  30. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
    [Crossref] [PubMed]
  31. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(21), 5117–5120 (2015).
    [Crossref] [PubMed]
  32. N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
    [Crossref]
  33. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2–15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
    [Crossref]
  34. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  35. M. H. Frosz, Supercontinuum generation in photonic crystal fibres: Modelling and dispersion engineering for spectral shaping, (Kgs. Lyngby: DTU, 2006).
  36. A. Sihvola, Electromagnetic Mixing Formulas and Applications, (The Institution of Electrical Engineers, 1999).
    [Crossref]
  37. O. C. Zienkiewicz, L. T. Taylor, and R. L. Taylor, The finite element method, Vol. 3 (McGraw-Hill, 1977).
  38. K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
    [Crossref] [PubMed]
  39. L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
    [Crossref]

2017 (2)

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

2016 (7)

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (3)

2013 (1)

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

2012 (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

2011 (2)

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

2010 (1)

2009 (3)

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses,” Opt. Express 17(5), 3255–3263 (2009).
[Crossref] [PubMed]

2006 (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

2002 (1)

2001 (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

1984 (2)

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Ahmad, R.

Bang, O.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Barthélémy, A.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Bendahmane, A.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Bernier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

Booker, C. F.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

Brown, T.

Buczynski, R.

Châtigny, S.

Cheng, T.

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

Choi, D.-Y.

Christodoulides, D. N.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Churbanov, M. F.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Cimalla, P.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Cimek, J.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Combes, Y.

Couderc, V.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Couillard, J.-F.

Dantanarayana, H. G.

Davidson, M.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

Day, R. N.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

Delarosbil, J.-L.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dudley, J. M.

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duval, S.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Feng, Y.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Fortin, V.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Gaeta, A. L.

Gai, X.

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Gauthier, J.-C.

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giessen, H.

Godin, T.

Guo, W.

Heidt, A. M.

Henderson-Sapir, O.

Hu, M.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Hudelist, F.

Ishida, K.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Jackson, S. D.

Jia, Z.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Johnson, A. R.

Joshi, C.

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Kasztelanic, R.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Katsuyama, T.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Kedenburg, S.

Keller, U.

Klenner, A.

Klimczak, M.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Koch, E.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Krupa, K.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Kubat, I.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kumar, A.

Kumari, S.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

Lamb, E. S.

Lamont, M. R. E.

Li, M.-J.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Li, N.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Li, Q. Q.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Lian, Z. G.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Lipson, M.

Liu, L.

Liu, Z.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Lucas, J.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Luke, K.

Luther-Davies, B.

Madden, S.

Matsumoto, M.

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Matsumura, H.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Mayer, A. S.

Millot, G.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Mittasch, M.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Mörz, F.

Nagasaka, K.

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Nolan, D. A.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Ohishi, Y.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

Okawachi, Y.

Olivier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

Ottaway, D. J.

Periasamy, A.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

Petersen, C. R.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Piché, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Pysz, D.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Qi, S.

Qin, G.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

Qin, W.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Quémard, C.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Robichaud, L.-R.

Rochette, M.

Saini, T. S.

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Satoh, S.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Shalaby, B. M.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Shiryaev, V. S.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Sinha, R. K.

Siwicki, B.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Smektala, F.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Sojka, L.

Stefaniuk, T.

Steinle, T.

Steinmann, A.

Stepien, R.

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

R. Buczyński, M. Klimczak, T. Stefaniuk, R. Kasztelanic, B. Siwicki, G. Stępniewski, J. Cimek, D. Pysz, and R. Stępień, “Optical fibers with gradient index nanostructured core,” Opt. Express 23(20), 25588–25596 (2015).
[Crossref] [PubMed]

Stepniewski, G.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Sun, Y.

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

Suzuki, T.

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

Sylvestre, T.

Taghizadeh, M. R.

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2(5), 607–613 (1984).
[Crossref]

Tezuka, H.

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Tonello, A.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Tong, H.

Tuan, T. H.

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Vallée, R.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

Wabnitz, S.

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Waddie, A. J.

Walther, J.

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

Wang, F.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Wang, R.

Wise, F. W.

Wright, L. G.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Yang, Z.

Yao, C.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Yu, Y.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Zhai, C.

Zhang, B.

Zhang, L.

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhu, Z.

Appl. Phys. Express (1)

K. Nagasaka, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Appl. Phys. Lett. (2)

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge‐Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45(9), 925–927 (1984).
[Crossref]

N. Li, F. Wang, C. Yao, Z. Jia, L. Zhang, Y. Feng, M. Hu, G. Qin, Y. Ohishi, and W. Qin, “Coherent supercontinuum generation from 1.4 to 4 μm in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser,” Appl. Phys. Lett. 110(6), 061102 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Biomed. Opt. (2)

Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, and A. Periasamy, “Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser,” J. Biomed. Opt. 14(5), 054009 (2009).
[Crossref] [PubMed]

P. Cimalla, J. Walther, M. Mittasch, and E. Koch, “Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range,” J. Biomed. Opt. 16(11), 116020 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (2)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

J. Opt. (1)

B. Siwicki, R. Kasztelanic, M. Klimczak, J. Cimek, D. Pysz, R. Stępień, and R. Buczyński, “Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres,” J. Opt. 18(6), 065102 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Nat. Photonics (2)

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lett. (7)

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref] [PubMed]

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
[Crossref] [PubMed]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605–4608 (2016).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(21), 5117–5120 (2015).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, G. Millot, and S. Wabnitz, “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett. 116(18), 183901 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm,” Proc. SPIE 9728, 972802 (2016).

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (8)

M. H. Frosz, Supercontinuum generation in photonic crystal fibres: Modelling and dispersion engineering for spectral shaping, (Kgs. Lyngby: DTU, 2006).

A. Sihvola, Electromagnetic Mixing Formulas and Applications, (The Institution of Electrical Engineers, 1999).
[Crossref]

O. C. Zienkiewicz, L. T. Taylor, and R. L. Taylor, The finite element method, Vol. 3 (McGraw-Hill, 1977).

A. Mendez and T. F. Morse, Specialty Optical Fibers Handbook, (Academic Press, 2007).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (London: Academic Press, 2001).

C. Dunsby and P. M. W. French, “Biophotonics applications of supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, ed. (Cambridge University, 2010).

IRflex, www.irflex.com , [Accessed: 28.02.2017].

SelenOptics, “Microstuctured Mid-infrared Optical Fibers,” http://selenoptics-web.wixsite.com/optics , [Accessed: 28.02.2017].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Calculated (a) material dispersion and (b) dispersion D of Ge10As23.4Se66.6 and As40Se60 chalcogenide glasses.
Fig. 2
Fig. 2 Scheme of effective refractive index profile of the nanostructured fiber core. (a) step-index, (b) linear, (c) parabolic, (d) x4.
Fig. 3
Fig. 3 Comparison of a graded-index core chalcogenide fiber chromatic dispersion. Assumed step-index, linear, parabolic and x4 profiles of refractive index of the core with dc = 16 μm.
Fig. 4
Fig. 4 Numerically obtained dispersion characteristics of chalcogenide fiber with nanostructured graded-index core for various core diameters dc. (a) step-index, (b) linear, (c) parabolic and (d) x4 profile of refractive index.
Fig. 5
Fig. 5 SC spectra obtained in nanostructured graded-index core chalcogenide fiber, pumped with 200 fs duration, 1 nJ input energy and 100 kHz repetition rate for various pump wavelengths.
Fig. 6
Fig. 6 SC generated in graded-index core chalcogenide fibers with three gradient profiles of refractive index in the core, step-index fiber as a reference and with core diameter (a) dc = 8 μm and (b) dc = 10 μm. Sample length 2 cm, pump pulse: central wavelength 6.3 μm, 1 nJ input energy, 200 fs duration, 100 kHz repetition rate.
Fig. 7
Fig. 7 Nonlinear coefficient γ of graded-index core chalcogenide fibers with three gradient profiles of refractive index in the core, step-index fiber as a reference and dc = 10 μm.
Fig. 8
Fig. 8 SC generated in graded-index core chalcogenide fibers with parabolic profile of refractive index inside the core and core diameter dc = 8 or 10 μm. Sample length 2 cm, pump pulse: central wavelength 6.3 μm, 1 nJ input energy, 200 fs duration, 100 kHz repetition rate.
Fig. 9
Fig. 9 Complex degree of first-order coherence | g 12 (1) (λ) | calculated from a set of 20 independent pairs of SC spectra in graded-index core chalcogenide fiber with parabolic profile of refractive index inside the core and dc = 10 μm.. Pump pulse used: 6.3 μm central wavelength, 1 nJ input energy, 200 fs duration, 100 kHz repetition rate.
Fig. 10
Fig. 10 Left: Refractive index distribution in the fiber core; Right: central cross-section of the refractive index distribution. (a) Discretized target assumed parabolic distribution of refractive index, (b) averaged parabolic distribution of refractive index inside the core calculated using the SA algorithm.
Fig. 11
Fig. 11 Glass rods distribution of the graded-index core chalcogenide fiber, calculated with effective medium approach. Fiber made of AsSe (higher refractive index) and GeAsSe (lower refractive index) glasses and core with dc = 10 μm.
Fig. 12
Fig. 12 Dispersion of an ideal parabolic and the discrete grade-index core chalcogenide fiber structures with dc = 10 μm.

Tables (1)

Tables Icon

Table 1 Sellmeier coefficients of the AsSe and GeAsSe glassesa.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| g 12 (1) (λ) |=| E 1 * (λ) E 2 (λ) | E 1 (λ) | 2 | E 2 (λ) | 2 |,
ε eff = ε e +3f ε e ε i ε e ε i +2 ε e f( ε i ε e ) ,
ε eff = ε e +f( ε i ε e ).
H(S)= i,j | n eff ( x i , y j ) n ideal ( x i , y j )| .

Metrics