Abstract

We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM00 pump laser sources, and their effect on the Kerr lens modelocking process.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

Charles G. Durfee, Tristan Storz, Jonathan Garlick, Steven Hill, Jeff A. Squier, Matthew Kirchner, Greg Taft, Kevin Shea, Henry Kapteyn, Margaret Murnane, and Sterling Backus
Opt. Express 20(13) 13677-13683 (2012)

Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

Sterling Backus, Matt Kirchner, Randy Lemons, David Schmidt, Charles Durfee, Margaret Murnane, and Henry Kapteyn
Opt. Express 25(4) 3666-3674 (2017)

Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses

Andreas Rohrbacher, Omar E. Olarte, Vesna Villamaina, Pablo Loza-Alvarez, and Bojan Resan
Opt. Express 25(9) 10677-10684 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. P. Huang, M. Asaki, S. Backus, H. Nathel, M. M. Murnane, and H. C. Kapteyn, in Ultrafast Phenomena VIII, edited by J. L. Martin, A. Migus, G. A. Mourou and A. Zewail (Springer-Verlag, Berlin, 1993), Vol. 55, pp. 160–162.
  2. J. Wallace, Laser Focus World “ULTRAFAST-LASER PUMPING OPSL has no 'green noise',” 45 (10), 30 (2009).
  3. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K. H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express 19(13), 12156–12163 (2011).
    [Crossref] [PubMed]
  4. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(12), 977–979 (1993).
    [Crossref] [PubMed]
  5. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
    [Crossref] [PubMed]
  6. P. W. Roth, A. J. Maclean, D. Burns, A. J. Kemp and Ieee, Modelocking of a diode-laser-pumped Ti:sapphire laser. (IEEE, 2010).
  7. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36(2), 304–306 (2011).
    [Crossref] [PubMed]
  8. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref] [PubMed]
  9. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, S. Backus and IEEE, in 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
  10. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
    [Crossref] [PubMed]
  11. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
    [Crossref]
  12. R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56(6), 1654–1661 (2017).
    [Crossref] [PubMed]
  13. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref] [PubMed]
  14. S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 25(4), 3666–3674 (2017).
    [Crossref] [PubMed]

2017 (2)

2015 (1)

2014 (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

2013 (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2009 (1)

1993 (1)

Andersen, P. E.

Asaki, M. T.

Backus, S.

Burns, D.

Durfee, C.

S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. Durfee, M. Murnane, and H. Kapteyn, “Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 25(4), 3666–3674 (2017).
[Crossref] [PubMed]

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Durfee, C. G.

Erbert, G.

Garlick, J.

Garvey, D.

Gürel, K.

Hakobyan, S.

Hasler, K. H.

Hill, S.

Hirosawa, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Hoffmann, M.

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Huang, C.-P.

Jensen, O. B.

Kannari, F.

R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56(6), 1654–1661 (2017).
[Crossref] [PubMed]

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kapteyn, H.

Kapteyn, H. C.

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kemp, A. J.

Kirchner, M.

Le, T.

Lemons, R.

Maclean, A. J.

Müller, A.

Murnane, M.

Murnane, M. M.

Petersen, P. M.

Resan, B.

Rohrbacher, A.

Roth, P. W.

Saraceno, C. J.

Sawada, R.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Schilt, S.

Schmidt, D.

Shea, K.

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Squier, J. A.

Stingl, A.

Storz, T.

Südmeyer, T.

Sugiyama, N.

Sumpf, B.

Taft, G.

Tanaka, H.

Unterhuber, A.

Weingarten, K.

Wittwer, V. J.

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Zhou, J.

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Other (4)

P. W. Roth, A. J. Maclean, D. Burns, A. J. Kemp and Ieee, Modelocking of a diode-laser-pumped Ti:sapphire laser. (IEEE, 2010).

C. P. Huang, M. Asaki, S. Backus, H. Nathel, M. M. Murnane, and H. C. Kapteyn, in Ultrafast Phenomena VIII, edited by J. L. Martin, A. Migus, G. A. Mourou and A. Zewail (Springer-Verlag, Berlin, 1993), Vol. 55, pp. 160–162.

J. Wallace, Laser Focus World “ULTRAFAST-LASER PUMPING OPSL has no 'green noise',” 45 (10), 30 (2009).

C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, S. Backus and IEEE, in 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) – picture of setup for spectral beam combination to obtain >6.2 W CW output in a single beam. (b) – spectrum of combined beam.

Fig. 2
Fig. 2

Kerr-lens modelocked Ti:sapphire oscillator pumped by spectrally-combined single emitter diodes. A variety of output spectra and powers can be obtained by varying the oscillator adjustment. (a) shows the configurations suitable for seeding regenerative and multipass amplifiers, while (b) shows the broader-bandwidth, more structured spectra attainable with this configuration.

Fig. 3
Fig. 3

Beam propagation software output showing the apodization and anamorphic focusing of the single emitter pump laser based on measured M2 values. (a) full propagation numbers in mm between elements, and where mode size is exaggerated to ease viewing, (b) focus in Ti:sapphire crystal where the Y axis is in µm, and cavity position denotes focal position from source.

Fig. 4
Fig. 4

(a) 465nm pump beam measured after the first three elements of optical system modeled in Fig. 3 (effectively the pump source input to the oscillator), with a 300mm focal length lens to resolve the focus on the camera. Images 1-5 shown used for M2 calculation. (b) M2 measurement of the 465nm single emitter laser diode after collimation and cylindrical telescope. Red X are horizontal beam radii, Blue Y are vertical radii, with respect to the optical table. The output beam has an M2 of 1.5 in the fast (Y) axis, and M2 of 12 in the slow (X) axis.

Fig. 5
Fig. 5

Calculated absorbed energy density in the Ti:sapphire crystal, based on the measured focal spot dimensions and M2 values. The contours are at 80%, 50% and 13.5% of peak intensity. The stretching factor that results from the Brewster angle refraction has been backed out in order to illustrate the gain distribution seen by the incoming beam.

Fig. 6
Fig. 6

Single high-power emitter pumped KLM Ti:sapphire oscillator. For a pump power of 3.1W, a Kerr Lens Modelocked output power of 173 mW was attained for an 80 nm FWHM spectrum.

Fig. 7
Fig. 7

(a) Output spectrum and phase as measured by FROG (error G = 0.001), (b) pulse duration for the compressed 13.5 fs pulses with a pulse energy of approximately 2 nJ and an average power of 140 mW after compression. A fused silica prism pair with 0.5 m separation was used to compress the pulses to near the transform limit.

Fig. 8
Fig. 8

Power stability of single diode-pumped KLM Ti:sapphire oscillator over 600 h. Diode current was held constant to provide 3.1W output; no power correction on the diode output was implemented. The output from the laser shows measurement-limit 0.33% RMS stability over entire run, indicating that the diode output power at constant current is not degrading significantly on this time scale. Interestingly, contamination of the laser crystal, which is often evident on this timescale using traditional TEM00 green pump lasers does not occur. Data were taken at 1 h intervals for the first 300 h, and at 25 h intervals after.

Metrics