Abstract

We present the modeling, design and characterization of a compact spectrometer, achieving a resolution better than 1.5 nm throughout the visible spectrum (360–825 nm). The key component in the spectrometer is a custom-printed varied-line-space (VLS) concave blazed grating, where the groove density linearly decreases from the center of the grating (530 g/mm) at a rate of 0.58 nm/mm to the edge (528 g/mm). Parametric models have been established to deterministically link the system performance with the VLS grating design parameters, e.g., groove density, line-space varying rate, and to minimize the system footprint. Simulations have been performed in ZEMAX to confirm the results, indicating a 15% enhancement in system resolution versus common constant line-space (CLS) gratings. Next, the VLS concave blazed grating is fabricated via our vacuum nanoimprinting system, where a polydimethylsiloxane (PDMS) stamp is non-uniformly expanded to form the varied-line-spacing pattern from a planar commercial grating master (600 g/mm) for precision imprinting. The concave blazed grating is measured to have an absolute diffraction efficiency of 43%, higher than typical holographic gratings (~30%) used in the commercial compact spectrometers. The completed compact spectrometer contains only one optical component, i.e., the VLS concave grating, as well as an entrance slit and linear photodetector array, achieving a footprint of 11 × 11 × 3 cm3, which makes it the most compact and resolving (1.46 nm) spectrometer of its kind.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method

Xinghui Li, Kai Ni, Qian Zhou, Xiaohao Wang, Rui Tian, and Jinchao Pang
Opt. Express 24(10) 10759-10766 (2016)

Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens

Qian Zhou, Xinghui Li, Kai Ni, Rui Tian, and Jinchao Pang
Opt. Express 24(2) 732-738 (2016)

Improved master-replica separation process for fabrication of a blazed concave grating by using a combination-type convex grating

Xinghui Li, Kai Ni, Qian Zhou, Peng Yan, Jinchao Pang, and Xiaohao Wang
Appl. Opt. 56(2) 298-302 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).
  2. C. P. Bacon, Y. Mattley, and R. Defrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
    [Crossref]
  3. K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
    [Crossref] [PubMed]
  4. Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012).
    [Crossref] [PubMed]
  5. C. H. Ko, W. C. Liu, N. P. Chen, J. L. Shen, and J. S. Lin, “Double reflection in the concave reflective blazed grating,” Opt. Express 15(17), 10498–10503 (2007).
    [Crossref] [PubMed]
  6. J. F. Wu, Y. Y. Chen, and T. S. Wang, “Flat field concave holographic grating with broad spectral region and moderately high resolution,” Appl. Opt. 51(4), 509–514 (2012).
    [Crossref] [PubMed]
  7. T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt. 22(4), 512–513 (1983).
    [Crossref] [PubMed]
  8. Q. Zhou, X. Li, K. Ni, R. Tian, and J. Pang, “Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens,” Opt. Express 24(2), 732–738 (2016).
    [Crossref] [PubMed]
  9. T. Namioka and W. R. Hunter, “A comparison of the efficiency and focused stray light characteristics of a conventionally ruled-and a holographically produced-concave diffraction grating in the vacuum ultraviolet,” Opt. Commun. 8(3), 229–233 (1973).
    [Crossref]
  10. N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
    [Crossref]
  11. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  12. Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
    [Crossref]
  13. High throughput compact spectrometer, Torus Series, https://oceanoptics.com/product/torus .
  14. C. A. Palmer and W. R. McKinney, “Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33(3), 820–829 (1994).
    [Crossref]
  15. H. Noda, T. Namioka, and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64(8), 1031–1036 (1974).
    [Crossref]
  16. J. Chen, C. Gu, H. Lin, and S. C. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
    [Crossref] [PubMed]
  17. J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
    [Crossref]
  18. J. Chen, H. H. Lee, D. Wang, S. Di, and S. C. Chen, “Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging,” Opt. Express 25(4), 4180–4189 (2017).
    [Crossref] [PubMed]
  19. J. E. Adkins and R. S. Rivlin, “Large elastic deformations of isotropic materials. IX. The deformation of thin shells,” Philos. Trans. R. Soc. London Ser. A 244(888), 505–531 (1952).
    [Crossref]
  20. E. G. Loewen, M. Nevière, and D. Maystre, “On an asymptotic theory of diffraction gratings used in the scalar domain,” J. Opt. Soc. Am. 68(4), 496–502 (1978).
    [Crossref]

2017 (1)

2016 (2)

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Q. Zhou, X. Li, K. Ni, R. Tian, and J. Pang, “Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens,” Opt. Express 24(2), 732–738 (2016).
[Crossref] [PubMed]

2015 (1)

2012 (2)

2010 (1)

2008 (1)

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

2007 (1)

2004 (1)

C. P. Bacon, Y. Mattley, and R. Defrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

2002 (1)

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

1994 (1)

C. A. Palmer and W. R. McKinney, “Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33(3), 820–829 (1994).
[Crossref]

1983 (1)

1978 (1)

1974 (1)

1973 (1)

T. Namioka and W. R. Hunter, “A comparison of the efficiency and focused stray light characteristics of a conventionally ruled-and a holographically produced-concave diffraction grating in the vacuum ultraviolet,” Opt. Commun. 8(3), 229–233 (1973).
[Crossref]

1968 (1)

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
[Crossref]

1952 (1)

J. E. Adkins and R. S. Rivlin, “Large elastic deformations of isotropic materials. IX. The deformation of thin shells,” Philos. Trans. R. Soc. London Ser. A 244(888), 505–531 (1952).
[Crossref]

Adkins, J. E.

J. E. Adkins and R. S. Rivlin, “Large elastic deformations of isotropic materials. IX. The deformation of thin shells,” Philos. Trans. R. Soc. London Ser. A 244(888), 505–531 (1952).
[Crossref]

Bacon, C. P.

C. P. Bacon, Y. Mattley, and R. Defrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Chen, J.

Chen, N. P.

Chen, S.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Chen, S. C.

Chen, Y. Y.

Cheng, J.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Deen, M. J.

Defrece, R.

C. P. Bacon, Y. Mattley, and R. Defrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Di, S.

Edmonds, M.

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

Fang, Q.

Galle, B.

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

Geyer, A.

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

Gu, C.

Harada, T.

Horrocks, L.

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

Hunter, W. R.

T. Namioka and W. R. Hunter, “A comparison of the efficiency and focused stray light characteristics of a conventionally ruled-and a holographically produced-concave diffraction grating in the vacuum ultraviolet,” Opt. Commun. 8(3), 229–233 (1973).
[Crossref]

Kita, T.

Ko, C. H.

Kuroda, H.

Lee, H. H.

Lee, K. S.

Li, L.

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Li, X.

Li, Z.

Lin, H.

Lin, J. S.

Liu, W. C.

Loewen, E. G.

Mattley, Y.

C. P. Bacon, Y. Mattley, and R. Defrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Maystre, D.

McGonigle, A.

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

McKinney, W. R.

C. A. Palmer and W. R. McKinney, “Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33(3), 820–829 (1994).
[Crossref]

Nakano, N.

Namioka, T.

H. Noda, T. Namioka, and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64(8), 1031–1036 (1974).
[Crossref]

T. Namioka and W. R. Hunter, “A comparison of the efficiency and focused stray light characteristics of a conventionally ruled-and a holographically produced-concave diffraction grating in the vacuum ultraviolet,” Opt. Commun. 8(3), 229–233 (1973).
[Crossref]

Nevière, M.

Ni, K.

Noda, H.

Oppenheimer, C.

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

Palmer, C. A.

C. A. Palmer and W. R. McKinney, “Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33(3), 820–829 (1994).
[Crossref]

Pang, J.

Rivlin, R. S.

J. E. Adkins and R. S. Rivlin, “Large elastic deformations of isotropic materials. IX. The deformation of thin shells,” Philos. Trans. R. Soc. London Ser. A 244(888), 505–531 (1952).
[Crossref]

Rolland, J. P.

Selvaganapathy, P. R.

Seya, M.

Shen, J. L.

Sheridon, N. K.

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
[Crossref]

Thompson, K. P.

Tian, R.

Wang, D.

Wang, T. S.

Wu, J. F.

Zeng, L.

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Zhang, D.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Zhou, Q.

Q. Zhou, X. Li, K. Ni, R. Tian, and J. Pang, “Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens,” Opt. Express 24(2), 732–738 (2016).
[Crossref] [PubMed]

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12(9), 316–318 (1968).
[Crossref]

J. Opt. Soc. Am. (2)

J. Volcanol. Geotherm. Res. (1)

B. Galle, C. Oppenheimer, A. Geyer, A. McGonigle, M. Edmonds, and L. Horrocks, “A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance,” J. Volcanol. Geotherm. Res. 119(1), 241–254 (2002).

Opt. Commun. (1)

T. Namioka and W. R. Hunter, “A comparison of the efficiency and focused stray light characteristics of a conventionally ruled-and a holographically produced-concave diffraction grating in the vacuum ultraviolet,” Opt. Commun. 8(3), 229–233 (1973).
[Crossref]

Opt. Eng. (1)

C. A. Palmer and W. R. McKinney, “Imaging theory of plane-symmetric varied line-space grating systems,” Opt. Eng. 33(3), 820–829 (1994).
[Crossref]

Opt. Express (5)

Philos. Trans. R. Soc. London Ser. A (1)

J. E. Adkins and R. S. Rivlin, “Large elastic deformations of isotropic materials. IX. The deformation of thin shells,” Philos. Trans. R. Soc. London Ser. A 244(888), 505–531 (1952).
[Crossref]

Precis. Eng. (1)

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Proc. SPIE (1)

Q. Zhou, L. Li, and L. Zeng, “A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings,” Proc. SPIE 6832, 68320W (2008).
[Crossref]

Rev. Sci. Instrum. (1)

C. P. Bacon, Y. Mattley, and R. Defrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Other (2)

High throughput compact spectrometer, Torus Series, https://oceanoptics.com/product/torus .

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical configuration of the compact spectrometer using a custom-printed VLS concave blazed grating

Fig. 2
Fig. 2

Spot diagrams around the selected wavelengths (i.e., 457 nm, 532 nm, and 633nm) at the imaging plane

Fig. 3
Fig. 3

(a) Illustration of the vacuum imprinting process for fabricating the VLS concave grating; and (b) generation of the VLS grating pattern on the PDMS stamp during its non-uniform expansion process; the specific center linewidth and line-space varying rate can be achieved by controlling the printing pressure and gap distance.

Fig. 4
Fig. 4

Optical and AFM characterization results of the UV imprinted VLS concave blazed grating: (a) printed VLS concave grating (substrate diameter = 25.4 mm; radius of curvature = 103.4 mm); (b) AFM image of the center region in (a); (c) cross-section profile of the white-line indicated in (b); the groove width is measured to be 1887 nm (~530 grooves/mm).

Fig. 5
Fig. 5

Diffraction test of the VLS concave blazed grating (coated with 500 nm aluminum film)

Fig. 6
Fig. 6

(a) Experimental setup for characterizing the spectral resolution; and (b) packaged compact spectrometer with a footprint of 11 × 11 × 3 cm3

Fig. 7
Fig. 7

Measured spectrum from the three cw lasers: DPSS laser (457 nm); DPSS laser (532 nm); and HeNe laser (633 nm)

Tables (7)

Tables Icon

Table 1 Design parameters of the compact spectrometer

Tables Icon

Table 2 Spectral resolution of the VLS and CLS concave gratings

Tables Icon

Table 3 VLS grating spacing vs. imprint pressure (p) and gap distance (g)

Tables Icon

Table 4 Summary of the diffraction test

Tables Icon

Table 5 Spectral resolution of the compact spectrometer at different wavelengths

Tables Icon

Table 6 Comparison between the compact spectrometer and state-of-the-art commercial systems

Tables Icon

Table 7 Performance comparison of concave gratings fabricated via different techniques

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ψ(λ,y,z)= APB AOB +mλN(y,z)
Ψ(λ,y,z)= i=0 j=0 F ij y i z j = i=0 j=0 ( M ij +mλ N ij ) y i z j
I= i=0 j=0 λ 1 λ 2 F ij 2 dλ
d(y)= d 0 +α| y |
N( y ) y = 1 d( y )

Metrics