Abstract

A novel fiber curvature sensor without temperature cross interference based on a single hole twin eccentric core fiber has been proposed. Anti-resonant mechanism combined with inline Mach-Zehnder interference (MZI) structure are applied to the measurands detection. The spectrum is composed of a comb spectrum caused by the inline MZI and several dominant resonant wavelengths induced by anti-resonant effect. The curvature sensitivity of −1.54dB/m−1 can be achieved by intensity demodulation of the selected dip of Gaussian fitting. Similarly, the temperature sensitivity of 70.71pm/°C and 34.17pm/°C are respectively achieved by tracking coherent decrease point obtained by the FFT band pass filter method and Gaussian fit dip. Consequently, a relatively higher resolution of temperature measurement can be realized by the two methods mentioned above. The proposed sensor has a great potential for structural health monitoring, such as buildings, towers, bridges, and many other infrastructures due to its compact structure, easy fabrication and without cross impacts.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method

Changyu Shen, Chuan Zhong, Yang You, Jinlei Chu, Xin Zou, Xinyong Dong, Yongxing Jin, Jianfeng Wang, and Huaping Gong
Opt. Express 20(14) 15406-15417 (2012)

Highly sensitive curvature sensor based on a multicladding fiber sandwiched dual no-core fibers structure

Yanhui Qi, Lin Ma, Zexin Kang, Yunlong Bai, Bin Yin, and Shuisheng Jian
Appl. Opt. 53(28) 6382-6388 (2014)

Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer

Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, Xiaoyong Zhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li
Opt. Express 22(2) 1680-1686 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  2. H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
    [Crossref] [PubMed]
  3. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
    [Crossref] [PubMed]
  4. H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
    [Crossref]
  5. Y. Zhao, L. Cai, and X. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas. 66(1), 141–147 (2017).
    [Crossref]
  6. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  7. Q. Sun, H. Luo, H. Luo, M. Lai, D. Liu, and L. Zhang, “Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection,” Opt. Express 23(10), 12777–12783 (2015).
    [Crossref] [PubMed]
  8. S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
    [Crossref] [PubMed]
  9. C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
    [Crossref]
  10. Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).
  11. Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
    [Crossref]
  12. Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
    [Crossref] [PubMed]
  13. W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
    [Crossref]
  14. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
    [Crossref] [PubMed]
  15. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  16. Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
    [Crossref] [PubMed]
  17. J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
    [Crossref]
  18. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref] [PubMed]
  19. Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
    [Crossref]
  20. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  21. M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41(21), 5122–5125 (2016).
    [Crossref] [PubMed]
  22. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
    [Crossref] [PubMed]
  23. F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
    [Crossref]
  24. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  25. X. L. Liu, W. Ding, Y. Y. Wang, S. F. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
    [Crossref] [PubMed]
  26. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  27. M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
    [Crossref] [PubMed]
  28. R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
    [Crossref]
  29. S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature insensitive liquid level sensor based on antiresonant reflecting guidance in silica tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
    [Crossref]
  30. P. Y. Yariv Amnon, Photonics: optical electronics in modern communications (Oxford University Press, 2007).

2017 (6)

Y. Zhao, L. Cai, and X. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas. 66(1), 141–147 (2017).
[Crossref]

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref] [PubMed]

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

X. L. Liu, W. Ding, Y. Y. Wang, S. F. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

2016 (10)

S. Liu, J. Tian, N. Liu, J. Xia, and P. Lu, “Temperature insensitive liquid level sensor based on antiresonant reflecting guidance in silica tube,” J. Lightwave Technol. 34(22), 5239–5243 (2016).
[Crossref]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41(21), 5122–5125 (2016).
[Crossref] [PubMed]

Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
[Crossref] [PubMed]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
[Crossref] [PubMed]

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

2015 (7)

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Q. Sun, H. Luo, H. Luo, M. Lai, D. Liu, and L. Zhang, “Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection,” Opt. Express 23(10), 12777–12783 (2015).
[Crossref] [PubMed]

S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
[Crossref] [PubMed]

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

2014 (3)

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2007 (1)

Abokhamis, M. S.

Akhmediev, N.

Amezcua Correa, R.

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Araújo, F. M.

Auguste, J. L.

Baddela, N. K.

Bai, Z.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Bang, O.

Blondy, J. M.

Cai, L.

Y. Zhao, L. Cai, and X. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas. 66(1), 141–147 (2017).
[Crossref]

Caldas, P.

Cao, L.

Cao, Y.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Chang, W.

Cheng, C.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Cheng, J.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Ding, W.

Dinh, X. Q.

Dong, X.

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

Farahi, F.

Feng, X.

Ferreira, L. A.

Frazão, O.

Fu, S.

Fu, X.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Gao, R.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Gao, S. F.

Gérome, F.

Gong, H.

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

Guo, J.

Hasan, M. I.

Hayes, J. R.

He, J.

Hou, M.

Hu, D. J. J.

Hu, M.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Huang, B.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Huang, T.

Huang, X.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Huang, Y.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Humbert, G.

Jiang, L.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Jiang, M.

Jiang, S.

Jiang, X.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Jiang, Y.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Kong, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Lai, M.

Li, X.

Y. Zhao, L. Cai, and X. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas. 66(1), 141–147 (2017).
[Crossref]

Li, Y.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Li, Z.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

Liao, C.

Liao, H.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Lim, J. L.

Lin, C.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Liu, B.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Liu, D.

Liu, H.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Liu, L.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Liu, N.

Liu, S.

Liu, X. L.

Liu, Y.

Liu, Y. G.

Liu, Z.

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Lu, D.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Lu, P.

Luan, F.

Luo, C.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Luo, H.

Mao, L.

Markos, C.

Martinez-Rios, A.

Meng, F.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

Meng, H.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Ni, W.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Nielsen, K.

Poletti, F.

Qi, Z.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

Qian, Z.

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

Qin, B.

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Richardson, D. J.

Salceda-Delgado, G.

Santos, J. L.

Schülzgen, A.

Seow, Y. M.

Shao, X.

Shum, P. P.

Stefani, A.

Su, J.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Sun, B.

Sun, Q.

Tan, C.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Tang, J.

Tang, M.

Tian, J.

Tong, W.

Tong, Z.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Van Newkirk, A.

Viegas, J.

Villatoro, J.

Wang, C.

Wang, P.

Wang, R.

Wang, S.

Wang, W.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Wang, Y.

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

Wang, Y. Y.

Wang, Z.

Wei, H.

Wheeler, N. V.

Woyessa, G.

Wu, H.

Wu, Z.

Xia, J.

Xiong, M.

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

Xiong, R.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Xu, Q.

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Xue, H.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Yang, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Yao, Q.

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Yin, G.

Yuan, L.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Yuan, S.

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Zhang, H.

Zhang, J.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Zhang, L.

Zhang, N.

Zhang, Y.

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Zhao, C.

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

Y. Zhao, L. Cai, and X. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas. 66(1), 141–147 (2017).
[Crossref]

Zhou, A.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

Zhou, J.

Zhu, F.

Zubia, J.

IEEE J. Sel. Top. Quantum Electron. (1)

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5600106 (2017).
[Crossref]

IEEE Photonics J. (3)

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 7100211 (2017).
[Crossref]

H. Gong, M. Xiong, Z. Qian, C. Zhao, and X. Dong, “Simultaneous measurement of curvature and temperature based on Mach–Zehnder interferometer comprising core-offset and spherical-shape structures,” IEEE Photonics J. 8(1), 6800109 (2016).
[Crossref]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Zhang, A. Zhou, B. Qin, Q. Xu, Z. Liu, J. Yang, and L. Yuan, “Simultaneous measurement of temperature and curvature based on hollow annular core fiber,” IEEE Photonics Technol. Lett. 26(11), 1128–1131 (2014).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Zhao, L. Cai, and X. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas. 66(1), 141–147 (2017).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

Y. Cao, H. Liu, Z. Tong, S. Yuan, and J. Su, “Simultaneous measurement of temperature and refractive index based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Commun. 342, 180–183 (2015).
[Crossref]

Opt. Express (9)

Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

Q. Sun, H. Luo, H. Luo, M. Lai, D. Liu, and L. Zhang, “Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection,” Opt. Express 23(10), 12777–12783 (2015).
[Crossref] [PubMed]

S. Wang, P. Lu, L. Mao, D. Liu, and S. Jiang, “Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing,” Opt. Express 23(2), 674–680 (2015).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Opt. Lett. (9)

X. L. Liu, W. Ding, Y. Y. Wang, S. F. Gao, L. Cao, X. Feng, and P. Wang, “Characterization of a liquid-filled nodeless anti-resonant fiber for biochemical sensing,” Opt. Lett. 42(4), 863–866 (2017).
[Crossref] [PubMed]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers,” Opt. Lett. 41(21), 5122–5125 (2016).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref] [PubMed]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
[Crossref] [PubMed]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
[Crossref] [PubMed]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
[Crossref] [PubMed]

Photonics Res. (1)

C. Lin, Y. Wang, Y. Huang, C. Liao, Z. Bai, M. Hou, Z. Li, and Y. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photonics Res. 5(2), 129–133 (2017).
[Crossref]

Sens. Actuat. A-Phys. (1)

Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sens. Actuat. A-Phys. 209, 73–77 (2014).

Other (1)

P. Y. Yariv Amnon, Photonics: optical electronics in modern communications (Oxford University Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) The cross section microscope images of the single hole twin eccentric cores fiber; (b) Three-dimensional stereoscopic schematic diagram of the single hole twin eccentric cores fiber.

Fig. 2
Fig. 2

(a) The aperture size of the single hole twin eccentric cores fiber; (b) The mode field distribution in the middle air hole; (c) The mode field distribution in the cladding.

Fig. 3
Fig. 3

(a) Guiding mechanism of the single hole twin eccentric cores fiber; (b) Beam propagation simulation of the anti-resonant effect at the wavelength of 1570nm.

Fig. 4
Fig. 4

FFT band pass filter of the high order cladding mode.

Fig. 5
Fig. 5

(a) The experiment and simulation spectrum; (b) The experiment spectrum and the Gaussian fits of the dip.

Fig. 6
Fig. 6

Schematic diagram of the experimental setup for curvature measurement.

Fig. 7
Fig. 7

(a) The intensity variation of the actual resonant wavelength with the curvature increased; (b) The intensity variation of the Gaussian fits resonant wavelength (dip2) with curvature increasing from 0.94m−1 to 2.1m−1.

Fig. 8
Fig. 8

Linear fit of dip2 and actual resonate wavelength about the sensitivities of −1.54dB/m−1 and −1.31dB/m−1 with the curvature increasing from 0.94m−1 to 2.1m−1, respectively.

Fig. 9
Fig. 9

(a) Gauss fit of the transmission spectrum with temperature from 20°C to 55°C at the state of straight line; (b) FFT band pass filter of the higher order cladding modes for temperature measurement.

Fig. 10
Fig. 10

Linear fit of the three different methods with temperature from 20°C to 55°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T anti =A F sin 2 ( 2π λ n(λ)l) 1+F sin 2 ( 2π λ n(λ)l)
λ anti = 2d m n 1 2 n 2 2
T MZi = B i cos 2 ( π λ Δ n i L)