Abstract

Depth and intensity profiling of targets at a range of up to 10 km is demonstrated using time-of-flight time-correlated single-photon counting technique. The system comprised a pulsed laser source at 1550 nm wavelength, a monostatic scanning transceiver and a single-element InGaAs/InP single-photon avalanche diode (SPAD) detector. High-resolution three-dimensional images of various targets acquired over ranges between 800 metres and 10.5 km demonstrate long-range depth and intensity profiling, feature extraction and the potential for target recognition. Using a total variation restoration optimization algorithm, the acquisition time necessary for each pixel could be reduced by at least a factor of ten compared to a pixel-wise image processing approach. Kilometer range depth profiles are reconstructed with average signal returns of less than one photon per pixel.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller
Opt. Express 21(7) 8904-8915 (2013)

Resolving range ambiguity in a photon counting depth imager operating at kilometer distances

Nils J. Krichel, Aongus McCarthy, and Gerald S. Buller
Opt. Express 18(9) 9192-9206 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Committee on Developments in Detector Technologies, National Research Council, Seeing Photons: Progress and Limits of Visible and Infrared Sensor Arrays (The National Academy Press, 2010).
  2. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  3. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).
  4. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
    [Crossref]
  5. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  6. W. Becker, Advanced Time-Correlated Single-Photon Counting Techniques (Springer, 2005).
  7. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  8. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [Crossref]
  9. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
    [Crossref]
  10. M. Iqbal, An Introduction to Solar Radiation (Academic Press, 1983).
  11. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for wireless optical communications,” Proc. SPIE 4214, 26–37 (2001).
  12. Safety of laser products, BSI Standards Publication, BS/EN/60825–1 (2014).
  13. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19(14), 13497–13502 (2011).
    [Crossref] [PubMed]
  14. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
    [Crossref] [PubMed]
  15. M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
    [Crossref]
  16. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
    [Crossref]
  17. K. J. Gordon, P. A. Hiskett, and R. A. Lamb, “Advanced 3D imaging lidar concepts for long-range sensing,” Proc. SPIE 9144, 91440G (2014).
  18. A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
    [Crossref] [PubMed]
  19. Safety of laser products, British Standards, PD IEC TR 60825–14 (2004).
  20. D. V. O’Connor and D. Phillips, Time-correlated Single-Photon Counting (Academic Press, 1984).
  21. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
    [Crossref] [PubMed]
  22. K. A. Stroud and D. J. Booth, Engineering Mathematics, 7th ed. (Palgrave McMillan, 2013).
  23. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, 1995).
  24. A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).
  25. A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imag. (in press) (2016).
  26. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
    [Crossref] [PubMed]
  27. D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
    [Crossref] [PubMed]
  28. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
    [Crossref] [PubMed]
  29. S. Hernández-Marín, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of Lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
    [Crossref] [PubMed]

2016 (4)

M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

2014 (1)

K. J. Gordon, P. A. Hiskett, and R. A. Lamb, “Advanced 3D imaging lidar concepts for long-range sensing,” Proc. SPIE 9144, 91440G (2014).

2013 (1)

2012 (2)

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
[Crossref] [PubMed]

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

2011 (1)

2010 (2)

2009 (1)

2007 (3)

S. Hernández-Marín, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of Lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref] [PubMed]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

2002 (2)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[Crossref]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

2001 (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for wireless optical communications,” Proc. SPIE 4214, 26–37 (2001).

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Altmann, Y.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Buller, G. S.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref] [PubMed]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

Chen, J.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Collins, R. J.

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[Crossref]

Della Frera, A.

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
[Crossref] [PubMed]

Entwistle, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Fernández, V.

Fouche, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Gemmell, N. R.

Gibson, G. J.

S. Hernández-Marín, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of Lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref] [PubMed]

Gordon, K. J.

K. J. Gordon, P. A. Hiskett, and R. A. Lamb, “Advanced 3D imaging lidar concepts for long-range sensing,” Proc. SPIE 9144, 91440G (2014).

Goyal, V. K.

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Gronwall, C.

M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Gu, X.

Hadfield, R. H.

Halimi, A.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

Heinrichs, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Henriksson, M.

M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Hernandez-Marin, S.

Hernández-Marín, S.

S. Hernández-Marín, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of Lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref] [PubMed]

Hiskett, P. A.

K. J. Gordon, P. A. Hiskett, and R. A. Lamb, “Advanced 3D imaging lidar concepts for long-range sensing,” Proc. SPIE 9144, 91440G (2014).

Itzler, M. A.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Jiang, X.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for wireless optical communications,” Proc. SPIE 4214, 26–37 (2001).

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Kong, W.

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for wireless optical communications,” Proc. SPIE 4214, 26–37 (2001).

Krichel, N. J.

Lamb, R. A.

K. J. Gordon, P. A. Hiskett, and R. A. Lamb, “Advanced 3D imaging lidar concepts for long-range sensing,” Proc. SPIE 9144, 91440G (2014).

Larsson, H.

M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Liang, Y.

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Marino, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for wireless optical communications,” Proc. SPIE 4214, 26–37 (2001).

McCarthy, A.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref] [PubMed]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

McLaughlin, S.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

Mooney, J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Nam, S. W.

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

O’Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Owens, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Patel, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Rangwala, S.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Ren, M.

Ren, X.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

Ruggeri, A.

Scarcella, C.

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
[Crossref] [PubMed]

Shapiro, J. H.

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Shehata, A. B.

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
[Crossref] [PubMed]

Shin, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

Slomkowski, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Tobin, R.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

Tolt, G.

M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Tosi, A.

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
[Crossref] [PubMed]

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Villa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Wallace, A. M.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

S. Hernández-Marín, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of Lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref] [PubMed]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Warburton, R. E.

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Wong, F. N. C.

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Wu, E.

Wu, G.

Xu, F.

D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref] [PubMed]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Zappa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Zeng, H.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

IEEE Trans. Image Process. (1)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Hernández-Marín, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of Lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref] [PubMed]

J. Geodyn. (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[Crossref]

Linc. Lab. J. (1)

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Linc. Lab. J. 13(2), 351–370 (2002).

Meas. Sci. Technol. (2)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Nat. Commun. (1)

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Henriksson, H. Larsson, C. Gronwall, and G. Tolt, “Continuously scanning time-correlated single-photon counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (3)

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3-D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[Crossref]

K. J. Gordon, P. A. Hiskett, and R. A. Lamb, “Advanced 3D imaging lidar concepts for long-range sensing,” Proc. SPIE 9144, 91440G (2014).

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for wireless optical communications,” Proc. SPIE 4214, 26–37 (2001).

Rev. Sci. Instrum. (1)

A. Tosi, A. Della Frera, A. B. Shehata, and C. Scarcella, “Fully programmable single-photon detection module for InGaAs/InP single-photon avalanche diodes with clean and sub-nanosecond gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).
[Crossref] [PubMed]

Other (10)

Safety of laser products, British Standards, PD IEC TR 60825–14 (2004).

D. V. O’Connor and D. Phillips, Time-correlated Single-Photon Counting (Academic Press, 1984).

K. A. Stroud and D. J. Booth, Engineering Mathematics, 7th ed. (Palgrave McMillan, 2013).

A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, 1995).

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, and G. S. Buller, S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” Proc. European Signal Processing Conf. (EUSIPCO 2016) (to be published).

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imag. (in press) (2016).

Safety of laser products, BSI Standards Publication, BS/EN/60825–1 (2014).

Committee on Developments in Detector Technologies, National Research Council, Seeing Photons: Progress and Limits of Visible and Infrared Sensor Arrays (The National Academy Press, 2010).

M. Iqbal, An Introduction to Solar Radiation (Academic Press, 1983).

W. Becker, Advanced Time-Correlated Single-Photon Counting Techniques (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup of the system operating in a mono-static configuration with a scanned single-element SPAD detector.

Fig. 2
Fig. 2

(a) A two-dimensional visible-band image of the top of the clock tower acquired with a camera lens of f = 200 mm. (b) Depth plot of the top of the clock tower at a range of ~800 m with 85 × 85 scan points and an acquisition time of 170 ms per pixel. (c) Depth plot of the top of the clock tower at a range of ~800 m with 85 × 85 scan points and an acquisition time of 170 ms per pixel showing side view of the target.

Fig. 3
Fig. 3

(a) Visible-band image of a residential building taken with an f = 200 mm camera lens. (b) Depth - intensity plot of the building imaged with 32 × 32 scan points over a range of ~8.8 km. (c) Depth plot of the building imaged with 32 × 32 scan points over a range of ~8.8 km; side view of the target.

Fig. 4
Fig. 4

(a) Visible band, close-up image of a typical pylon taken with an f = 200 mm camera lens, (b) and (c) depth-intensity plots of a pylon acquired with 40 × 80 scan points over a distance of ~6.8 km where (b) is plotted for a least-squares fit based peak finder with a threshold of 5 counts and (c) is plotted for a threshold of 7 counts.

Fig. 5
Fig. 5

(a) Visible band image of the scanned scene of the terrain located to the right of the Ski Slope on the Pentland Hills taken with an f = 200 mm camera lens; Depth and intensity plots of terrain recorded with 32 × 32 scan points over a range of 10.5 km with an acquisition time per scan point of 0.3 s where:(b) is a front-side view intensity and depth plot; (c) is a side view depth plot.

Fig. 6
Fig. 6

Wide field-of-view (FoV) monochromatic image of the target taken with an auxiliary CCD camera. The scene was divided into three parts which were separately scanned to generate a full image of the object.

Fig. 7
Fig. 7

Depth-plots of a building at 3 km; (a) bottom-right-side view (b) bottom-left-side view. The image is a mosaic of three segments and consists of 100 × 230 scan points. The acquisition time per scan point was 1.8 ms per scan point resulting in 41 s total acquisition time.

Fig. 8
Fig. 8

Wide field-of-view, visible band image of a clock face on a tower taken with an f = 200 mm camera lens.

Fig. 9
Fig. 9

Depth profile measurements of a clock face on a tower over a range of ~800 m acquired with 50 × 50 scan steps analyzed using cross-correlation (a1) – (g1) and RDI-TV (a2) – (g2).

Tables (1)

Tables Icon

Table 1 (a) Total acquisition time for 50 × 50 pixels; (b) Average number of photons per pixel; (c) SBR for acquisition time per pixel varying between 5.3 ms – 13.75 µs; (d) RSNR calculated for the cross-correlation and the RDI-TV algorithm for the acquisition times per pixel varying between 5.3 ms – 13.75 µs; (e) total processing time for 50 × 50 pixels for cross-correlation and RDI-TV for acquisition time per pixel varying between 5.3 ms – 13.75 µs;.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

re s 2 = t=1 T [ x n,t y n,t ] 2
R= [mp+ t f ]c 2
C(d,r)=L(Kd,Kr)+ϕ(d,r)
L(d,r)= n=1 N t=1 T [ s n,t y n,t log( s n,t )]+cst
C TV (d,r)=L(Kd,Kr)+ τ 1 TV(d)+ τ 2 TV(r)
RSNR=10 log 10 ( d ref 2 d ref d ^ 2 )

Metrics