Abstract

This study focuses on presenting a fully stabilized, self-referenced Yb:fiber frequency comb respectively phase locked to a microwave standard and an optical reference employing the highest, fundamental repetition rate of 750-MHz without additional external amplifiers and compressors. In addition, the challenge of phase locking the carrier envelop offset frequency for this high-repetition-rate fiber frequency comb is separately investigated in two schemes, namely, f-2f self-referencing and an approach of phase locking a beat note between the Yb: fiber frequency comb and a continuous wave laser.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Bo Xu, Hideaki Yasui, Yoshiaki Nakajima, Yuxuan Ma, Zhigang Zhang, and Kaoru Minoshima, "Fully stabilized 750-MHz Yb: fiber frequency comb: erratum," Opt. Express 25, 13332-13332 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-12-13332

OSA Recommended Articles
Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate

Sargis Hakobyan, Valentin J. Wittwer, Pierre Brochard, Kutan Gürel, Stéphane Schilt, Aline S. Mayer, Ursula Keller, and Thomas Südmeyer
Opt. Express 25(17) 20437-20453 (2017)

Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser

Stephane Schilt, Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Max C. Stumpf, Gianni Di Domenico, Selina Pekarek, Andreas E. H. Oehler, Thomas Südmeyer, Ursula Keller, and Pierre Thomann
Opt. Express 19(24) 24171-24181 (2011)

87Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb

Thomas C. Schratwieser, Karolis Balskus, Richard A. McCracken, Carl Farrell, Christopher G. Leburn, Zhaowei Zhang, Tobias P. Lamour, Teresa I. Ferreiro, Alireza Marandi, Aidan S. Arnold, and Derryck T. Reid
Opt. Express 22(9) 10494-10499 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
    [Crossref]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
    [Crossref] [PubMed]
  3. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
    [Crossref] [PubMed]
  4. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009).
    [Crossref] [PubMed]
  5. M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
    [Crossref] [PubMed]
  6. B. Resan, S. Kurmulis, Z. Y. Zhang, A. E. H. Oehler, V. Markovic, M. Mangold, T. Südmeyer, U. Keller, R. A. Hogg, and K. J. Weingarten, “10 GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror,” Appl. Opt. 55(14), 3776–3780 (2016).
    [Crossref] [PubMed]
  7. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
    [Crossref] [PubMed]
  8. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
    [Crossref] [PubMed]
  9. A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22(25), 31008–31019 (2014).
    [Crossref] [PubMed]
  10. T. D. Shoji, W. Y. Xie, K. L. Silverman, A. Feldman, T. Harvey, R. P. Mirin, and T. R. Schibli, “Ultra-low-noise monolithic mode-locked solid-state laser,” Optica 3(9), 995 (2016).
    [Crossref]
  11. F. L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28(23), 2324–2326 (2003).
    [Crossref] [PubMed]
  12. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
    [Crossref] [PubMed]
  13. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
    [Crossref] [PubMed]
  14. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  15. H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [Crossref] [PubMed]
  16. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49(29), 5577–5582 (2010).
    [Crossref] [PubMed]
  17. J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  18. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
    [Crossref] [PubMed]
  19. I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, A. Ruehl, L. Dong and M. E. Fermann, “Fully stabilized GHz Yb-fiber laser frequency comb,” in Advanced Solid-State Photonics (Optical Society of America, 2009), paper MF9.
  20. G. Wang, F. Meng, C. Li, T. Jiang, A. Wang, Z. Fang, and Z. Zhang, “500 MHz spaced Yb:fiber laser frequency comb without amplifiers,” Opt. Lett. 39(9), 2534–2536 (2014).
    [Crossref] [PubMed]
  21. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
    [Crossref] [PubMed]
  22. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [Crossref] [PubMed]
  23. C. Li, G. Wang, T. Jiang, A. Wang, Z. Zhang, A. M. Wang, and Z. G. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
    [Crossref] [PubMed]
  24. T. Jiang, A. Wang, G. Wang, W. Zhang, F. Niu, C. Li, and Z. Zhang, “Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust f ceo singals,” Opt. Express 22(2), 1835–1841 (2014).
    [Crossref] [PubMed]
  25. W. Kokuyama, H. Nozato, A. Ohta, and K. Hattori, “Simple digital phase- measuring algorithm for low-noise heterodyne interferometry,” Meas. Sci. Technol. 27(8), 085001 (2016).
    [Crossref]
  26. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University Press, 2009), Chap. 1.
  27. E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instrum. 76(5), 054703 (2005).
    [Crossref]

2016 (4)

2015 (2)

2014 (3)

2013 (1)

2012 (2)

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (1)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instrum. 76(5), 054703 (2005).
[Crossref]

2004 (2)

2003 (2)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

1999 (1)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Byun, H.

Chang, G.

Chen, H.-W.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Curto, G. L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Daimon, Y.

Diddams, S. A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Dudley, J. M.

Endo, M.

Fang, Z.

Feldman, A.

Fermann, M. E.

Gaeta, A. L.

Gao, X.

González Hernández, J. I.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Guo, R.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hartl, I.

Harvey, T.

Hattori, K.

W. Kokuyama, H. Nozato, A. Ohta, and K. Hattori, “Simple digital phase- measuring algorithm for low-noise heterodyne interferometry,” Meas. Sci. Technol. 27(8), 085001 (2016).
[Crossref]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Hirano, M.

Hogg, R. A.

Holzwarth, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hong, F. L.

Hong, F.-L.

Inaba, H.

Ippen, E. P.

Ito, I.

Jiang, J.

Jiang, T.

Johnson, A. R.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Jørgensen, C. G.

Kärtner, F. X.

Keller, U.

Klenner, A.

Kobayashi, Y.

Kokuyama, W.

W. Kokuyama, H. Nozato, A. Ohta, and K. Hattori, “Simple digital phase- measuring algorithm for low-noise heterodyne interferometry,” Meas. Sci. Technol. 27(8), 085001 (2016).
[Crossref]

Kolodziejski, L. A.

Kundermann, S.

Kurmulis, S.

Lamont, M. R. E.

Lecomte, S.

Leitenstorfer, A.

Li, C.

Lipson, M.

Luke, K.

Ma, Y.

Manescau, A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Mangold, M.

Marcinkevicius, A.

Markovic, V.

Matsumoto, H.

Mayer, A. S.

McFerran, J. J.

Meng, F.

Minoshima, K.

Mirin, R. P.

Motamedi, A.

Nakagawa, K.

Nakazawa, M.

Nenadovic, L.

Newbury, N. R.

Nicholson, J. W.

Niu, F.

Nozato, H.

W. Kokuyama, H. Nozato, A. Ohta, and K. Hattori, “Simple digital phase- measuring algorithm for low-noise heterodyne interferometry,” Meas. Sci. Technol. 27(8), 085001 (2016).
[Crossref]

Oehler, A. E. H.

Ohta, A.

W. Kokuyama, H. Nozato, A. Ohta, and K. Hattori, “Simple digital phase- measuring algorithm for low-noise heterodyne interferometry,” Meas. Sci. Technol. 27(8), 085001 (2016).
[Crossref]

Okawachi, Y.

Okuno, T.

Onae, A.

Onishi, M.

Pasquini, L.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Pekarek, S.

Petrich, G. S.

Probst, R. A.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Rebolo, R.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Reichert, J.

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Resan, B.

Rubiola, E.

E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instrum. 76(5), 054703 (2005).
[Crossref]

Ruehl, A.

Sander, M. Y.

Schibli, T. R.

Schilt, S.

Schlager, J. B.

Shen, H.

Shoji, T. D.

Silverman, K. L.

Steinmetz, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Südmeyer, T.

Swann, W. C.

Tauser, F.

Udem, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Wang, A.

Wang, A. M.

Wang, G.

Washburn, B. R.

Weingarten, K. J.

Wilken, T.

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

Xie, W. Y.

Xu, S.

Yan, M. F.

Yang, Z.

Zhang, W.

Zhang, Z.

Zhang, Z. G.

Zhang, Z. Y.

Zinth, W.

Appl. Opt. (3)

Meas. Sci. Technol. (1)

W. Kokuyama, H. Nozato, A. Ohta, and K. Hattori, “Simple digital phase- measuring algorithm for low-noise heterodyne interferometry,” Meas. Sci. Technol. 27(8), 085001 (2016).
[Crossref]

Nature (1)

T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature 485(7400), 611–614 (2012).
[Crossref] [PubMed]

Opt. Express (8)

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011).
[Crossref] [PubMed]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

A. Klenner, S. Schilt, T. Südmeyer, and U. Keller, “Gigahertz frequency comb from a diode-pumped solid-state laser,” Opt. Express 22(25), 31008–31019 (2014).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadović, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser,” Opt. Express 23(2), 1276–1282 (2015).
[Crossref] [PubMed]

F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
[Crossref] [PubMed]

T. Jiang, A. Wang, G. Wang, W. Zhang, F. Niu, C. Li, and Z. Zhang, “Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust f ceo singals,” Opt. Express 22(2), 1835–1841 (2014).
[Crossref] [PubMed]

H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

Opt. Lett. (7)

Optica (1)

Phys. Rev. Lett. (1)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

E. Rubiola, “On the measurement of frequency and of its sample variance with high-resolution counters,” Rev. Sci. Instrum. 76(5), 054703 (2005).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[Crossref] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Other (2)

I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, A. Ruehl, L. Dong and M. E. Fermann, “Fully stabilized GHz Yb-fiber laser frequency comb,” in Advanced Solid-State Photonics (Optical Society of America, 2009), paper MF9.

E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University Press, 2009), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A 750-MHz Yb: fiber frequency comb stabilized to an RF reference with the f-2f self-referencing scheme for fceo detection. SYN: synthesizer; DBF: double balanced mixer; BPF: band pass filter; APD: avalanche photodiode detector; DM: dichroic mirror; M: mirror; HWP: half wave-plate; PZT: piezoelectric transducer; LD: laser diode.

Fig. 2
Fig. 2

(a) Octave-spanning SC spectrum generation by a tapered PCF. The indicated spectral portions at 600 nm and 1200 nm are used for the self-referencing approach (Green line: optical spectrum of 750-MHz Yb oscillator centered at 1045 nm) (b) Detection of free-running fceo signal. The inset denotes the linewidth fceo of 150 kHz with a Lorentz fitting at 50 kHz RBW. (c) Phase noise of the fceo (free-running: black; after phase locking: red).

Fig. 3
Fig. 3

(a) Absolute Allan deviation of fceofceo) (Red line: absolute Allan deviation with 1/100 frequency divider; Black line: CNT 90 counter limit). (b) Relative Allan deviation of frep (δfrep/ frep) normalized to 750 MHz. (Orange line: relative Allan deviation of frep; Purple line: Measurement limit; Green triangle plot: 1/tau trend points).

Fig. 4
Fig. 4

A 750-MHz Yb: fiber frequency comb stabilized to an RF reference by phase locking the beat note fbeat scheme for fceo detection.

Fig. 5
Fig. 5

(a) Free-running fbeat under the condition of phase-locked frep; (b) fbeat linewidths against the different RBWs; (c) Relative Allan deviations of frepfrep/frep); (d) Absolute Allan deviation of fbeatfbeat). All date were measured by a frequency counter (Agilent 53132A, internal trigger mode).

Fig. 6
Fig. 6

A 750-MHz Yb: fiber frequency comb stabilized to optical reference.

Fig. 7
Fig. 7

(a) Phase noise of the fbeat (free-running: black; after phase locking: blue); (b) Relative Allan deviations of fbeat (the blue curve), fceo (the red curve) normalized to the optical standard of 282 THz; Black curve denotes the counter limit. Relative stability of the frepfrep /frep, the orange curve) referenced to the RF standards (the plot is the same as that shown in Fig. 3(b)) is also shown for comparison.

Tables (1)

Tables Icon

Table 1 Comparison for the relative stability of every comb tooth δfN/fopt

Metrics