Abstract

Broadband low dispersion (BBLD) mirrors are an essential component in femto-second (fs) pulse laser systems. We designed and produced Ta2O5-HfO2/SiO2 composite quarter-wave and non-quarter-wave HfO2/SiO2 BBLD mirrors for the 30fs petawatt laser system. The laser damage properties of the BBLD mirrors were investigated in an uncompressed sub-nanosecond laser pulse. It showed that the Ta2O5-HfO2/SiO2 composite BBLD mirror possessed higher LIDT due to the low electric-field intensity (EFI) in the case of the coating without artificial nodules. Nevertheless, the LIDT of the composite mirror was significantly lower than the non-quarter-wave HfO2/SiO2 mirror when the nodules exist. The EFI simulation and damage morphology of the nodules analysis demonstrated that the nodule leading to the light intensification in the middle of the boundary between the nodular and the surrounding coating, thus the outermost HfO2/SiO2 layers cannot protect the Ta2O5/SiO2 layers, and resulting to the significantly low LIDT. This study shed some light on the development of high-laser-damage BBLD mirrors for pulse compression laser systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings

Hongping Ma, Xinbin Cheng, Jinlong Zhang, Hongfei Jiao, Bin Ma, Yongjian Tang, Zhouling Wu, and Zhanshan Wang
Opt. Lett. 42(3) 478-481 (2017)

Physical insight toward electric field enhancement at nodular defects in optical coatings

Xinbin Cheng, Abudusalamu Tuniyazi, Zeyong Wei, Jinlong Zhang, Tao Ding, Hongfei Jiao, Bin Ma, Hongqiang Li, Tongbao Li, and Zhanshan Wang
Opt. Express 23(7) 8609-8619 (2015)

Influence of composition and seed dimension on the structure and laser damage of nodular defects in HfO2/SiO2 high reflectors

Chaoyang Wei, Kui Yi, Zhengxiu Fan, and Jianda Shao
Appl. Opt. 51(28) 6781-6788 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
    [Crossref]
  2. J. C. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers-Applications in Science and Industry (InTech Open Access Publisher, 2011), pp. 23–52.
  3. H. Takada, M. Kakehata, and K. Torizuka, “Broadband high-energy mirror for ultrashort pulse amplification system,” Appl. Phys. B 70(S1), S189–S192 (2000).
    [Crossref]
  4. J. B. Oliver, J. Bromage, C. Smith, D. Sadowski, C. Dorrer, and A. L. Rigatti, “Plasma-Ion-Assisted Coatings for 15 Femtosecond Laser Systems,” Appl. Opt. 53(4), A221–A228 (2014).
    [Crossref] [PubMed]
  5. J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
    [Crossref]
  6. E. S. Field, J. C. Bellum, and D. E. Kletecka, “Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers,” Opt. Eng. 56(1), 011018 (2016).
    [Crossref]
  7. C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
    [Crossref]
  8. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45(7), 1594–1601 (2006).
    [Crossref] [PubMed]
  9. X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
    [Crossref]
  10. L. Gallais, X. Cheng, and Z. Wang, “Influence of nodular defects on the laser damage resistance of optical coatings in the femtosecond regime,” Opt. Lett. 39(6), 1545–1548 (2014).
    [Crossref] [PubMed]
  11. J. Bellum, E. Field, D. Kletecka, and F. Long, “Reactive ion-assisted deposition of e-beam evaporated titanium for high refractive index TiO2 layers and laser damage resistant, broad bandwidth, high-reflection coatings,” Appl. Opt. 53(4), A205–A211 (2014).
    [Crossref] [PubMed]
  12. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
  13. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  14. J. Zhang, A. V. Tikhonravov, Y. Liu, M. K. Trubetskov, A. Gorokh, and Z. Wang, “Design, production and reverse engineering of ultra-steep hot mirrors,” Opt. Express 22(11), 13448–13453 (2014).
    [Crossref] [PubMed]
  15. X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, “Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors,” Appl. Opt. 50(9), C357–C363 (2011).
    [Crossref] [PubMed]
  16. K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
    [Crossref]
  17. Z. Wang, G. Bao, H. Jiao, B. Ma, J. Zhang, T. Ding, and X. Cheng, “Interfacial damage in a Ta2O5/SiO2 double cavity filter irradiated by 1064 nm nanosecond laser pulses,” Opt. Express 21(25), 30623–30632 (2013).
    [Crossref] [PubMed]
  18. X. Cheng, A. Tuniyazi, Z. Wei, J. Zhang, T. Ding, H. Jiao, B. Ma, H. Li, T. Li, and Z. Wang, “Physical insight toward electric field enhancement at nodular defects in optical coatings,” Opt. Express 23(7), 8609–8619 (2015).
    [Crossref] [PubMed]
  19. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt. 50(9), C373–C381 (2011).
    [Crossref] [PubMed]
  20. C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
    [Crossref]

2016 (2)

J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
[Crossref]

E. S. Field, J. C. Bellum, and D. E. Kletecka, “Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers,” Opt. Eng. 56(1), 011018 (2016).
[Crossref]

2015 (5)

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

X. Cheng, A. Tuniyazi, Z. Wei, J. Zhang, T. Ding, H. Jiao, B. Ma, H. Li, T. Li, and Z. Wang, “Physical insight toward electric field enhancement at nodular defects in optical coatings,” Opt. Express 23(7), 8609–8619 (2015).
[Crossref] [PubMed]

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

2014 (4)

2013 (2)

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Z. Wang, G. Bao, H. Jiao, B. Ma, J. Zhang, T. Ding, and X. Cheng, “Interfacial damage in a Ta2O5/SiO2 double cavity filter irradiated by 1064 nm nanosecond laser pulses,” Opt. Express 21(25), 30623–30632 (2013).
[Crossref] [PubMed]

2011 (2)

2010 (1)

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).

2006 (1)

2000 (1)

H. Takada, M. Kakehata, and K. Torizuka, “Broadband high-energy mirror for ultrashort pulse amplification system,” Appl. Phys. B 70(S1), S189–S192 (2000).
[Crossref]

Adams, J.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Bao, G.

Bayramian, A.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Bellum, J.

Bellum, J. C.

J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
[Crossref]

E. S. Field, J. C. Bellum, and D. E. Kletecka, “Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers,” Opt. Eng. 56(1), 011018 (2016).
[Crossref]

Bromage, J.

Bude, J.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Cheng, X.

Cheng, X. B.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Chowdhury, E.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

Daly, M.

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

Danson, C.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Ding, T.

Dorrer, C.

Feit, M. D.

Field, E.

Field, E. S.

J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
[Crossref]

E. S. Field, J. C. Bellum, and D. E. Kletecka, “Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers,” Opt. Eng. 56(1), 011018 (2016).
[Crossref]

Folta, J. A.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Gallais, L.

Gorokh, A.

Haefner, C.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Hillier, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Hopps, N.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Jiao, H.

Kafka, K.

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Kakehata, M.

H. Takada, M. Kakehata, and K. Torizuka, “Broadband high-energy mirror for ultrashort pulse amplification system,” Appl. Phys. B 70(S1), S189–S192 (2000).
[Crossref]

Kirchner, M.

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

Kletecka, D.

Kletecka, D. E.

E. S. Field, J. C. Bellum, and D. E. Kletecka, “Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers,” Opt. Eng. 56(1), 011018 (2016).
[Crossref]

J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
[Crossref]

Li, H.

Li, H. Q.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Li, T.

Liu, Y.

Long, F.

Lu, J.

Ma, B.

Marshall, C.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Menoni, C. S.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Menor, M. G.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Mirkarimi, J. E.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Monterrosa, A. M.

Neely, D.

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Negres, R.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Negres, R. A.

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

Oliver, J. B.

Patel, D.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Pervak, V.

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).

Pistor, T. V.

Qiu, S. R.

Rigatti, A. L.

Sadowski, D.

Shea, K.

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

Shen, Z.

Smith, C.

Soufli, R.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Spinka, T.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Stolz, C.

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

Stolz, C. J.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt. 50(9), C373–C381 (2011).
[Crossref] [PubMed]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45(7), 1594–1601 (2006).
[Crossref] [PubMed]

Takada, H.

H. Takada, M. Kakehata, and K. Torizuka, “Broadband high-energy mirror for ultrashort pulse amplification system,” Appl. Phys. B 70(S1), S189–S192 (2000).
[Crossref]

Tao, D.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Teslich, N. E.

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Tikhonravov, A. V.

J. Zhang, A. V. Tikhonravov, Y. Liu, M. K. Trubetskov, A. Gorokh, and Z. Wang, “Design, production and reverse engineering of ultra-steep hot mirrors,” Opt. Express 22(11), 13448–13453 (2014).
[Crossref] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).

Torizuka, K.

H. Takada, M. Kakehata, and K. Torizuka, “Broadband high-energy mirror for ultrashort pulse amplification system,” Appl. Phys. B 70(S1), S189–S192 (2000).
[Crossref]

Trubetskov, M. K.

J. Zhang, A. V. Tikhonravov, Y. Liu, M. K. Trubetskov, A. Gorokh, and Z. Wang, “Design, production and reverse engineering of ultra-steep hot mirrors,” Opt. Express 22(11), 13448–13453 (2014).
[Crossref] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).

Tuniyazi, A.

Wang, X.

Wang, Z.

Wang, Z. S.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Wei, Z.

Wei, Z. Y.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Winstone, T. B.

J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
[Crossref]

Wolfe, J. E.

Zhang, J.

Zhang, J. L.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

H. Takada, M. Kakehata, and K. Torizuka, “Broadband high-energy mirror for ultrashort pulse amplification system,” Appl. Phys. B 70(S1), S189–S192 (2000).
[Crossref]

Coatings (1)

J. C. Bellum, E. S. Field, T. B. Winstone, and D. E. Kletecka, “Low group delay dispersion optical coating for broad bandwidth high reflection at 45 incidence, P polarization of femtosecond pulses with 900nm center wavelength,” Coatings 6(1), 11 (2016).
[Crossref]

High Power Laser Science and Engineering (1)

C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering 3, e3 (2015).
[Crossref]

Light Sci. Appl. (1)

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The function of electric-field in thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulse,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Opt. Eng. (1)

E. S. Field, J. C. Bellum, and D. E. Kletecka, “Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers,” Opt. Eng. 56(1), 011018 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (3)

C. J. Stolz, R. A. Negres, K. Kafka, E. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “150-ps broadband low dispersion mirror thin film damage competition,” Proc. SPIE 9632, 96320C (2015).
[Crossref]

K. Kafka, E. Chowdhury, R. Negres, C. Stolz, J. Bude, A. Bayramian, C. Marshall, T. Spinka, and C. Haefner, “Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings,” Proc. SPIE 9632, 96321C (2015).
[Crossref]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).

Thin Solid Films (1)

C. J. Stolz, J. E. Mirkarimi, J. A. Folta, J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. S. Menoni, and D. Patel, “Substrate and coating defect planarization strategies for high-laser fluence multilayer mirrors,” Thin Solid Films 592, 216–220 (2015).
[Crossref]

Other (2)

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .

J. C. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers-Applications in Science and Industry (InTech Open Access Publisher, 2011), pp. 23–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Coating structures and EFI distributions of two broadband low dispersion mirrors.
Fig. 2
Fig. 2 Comparison of measured GDD data (red crosses) and theoretical GDD (solid black curve) of the low-dispersive mirrors.
Fig. 3
Fig. 3 Ejection fluence of artificial nodules of the three HR coatings.
Fig. 4
Fig. 4 Comparisons between simulated |E|2 distributions and damage morphologies of nodules in HfO2/SiO2 QW mirror, modified HfO2/SiO2 mirror and the composite mirror: (a1-a3) the cross-section morphologies of the nodules; (b1-b3) Typical damage morphologies of the nodules; (c1-c3) FDTD-simulated p-polarized |E|2 distributions where the white lines represent film stacks and the color scale is different for different nodules.
Fig. 5
Fig. 5 The damage growth threshold of the three broadband low dispersion HR coatings.

Tables (1)

Tables Icon

Table 1 LIDTs of three HR optical coatings without nodular defects

Metrics