Abstract

We present a tracking interferometer with an intrinsic compensation of the refractive index of air. By using both wavelengths of a frequency doubled Nd:YAG laser the refractive index of air can be determined and compensated by the dispersion. One dimensional benchmark verification experiments in air conditioned and typical harsh, uncontrolled environment show an asymptotic length dependent uncertainty in the order of 0.1 μm/m for distances over 10 m, proofing the potential of this approach for high accuracy measurements in industrial environments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-accuracy displacement interferometry refin air

W. Tyler Estler
Appl. Opt. 24(6) 808-815 (1985)

Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer

Carl A. Friehe, J. C. La Rue, F. H. Champagne, C. H. Gibson, and G. F. Dreyer
J. Opt. Soc. Am. 65(12) 1502-1511 (1975)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  2. S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
    [Crossref]
  3. J. Dale, B. Hughes, A. J. Lancaster, A. J. Lewis, A. J. H. Reichold, and M. S. Warden, “Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells,” Opt. Express 22, 24869–24893 (2014).
    [Crossref]
  4. R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39, 5834–5837 (2014).
    [Crossref]
  5. G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26, 084003 (2015).
    [Crossref]
  6. G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
    [Crossref]
  7. W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
    [Crossref]
  8. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
    [Crossref]
  9. J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
    [Crossref]
  10. T. Hieta, M. Merimaa, M. Vainio, J. Seppä, and A. Lassila, “High-precision diode-laser-based temperature measurement for air refractive index compensation,” Appl. Opt. 50, 5990–5998 (2011).
    [Crossref]
  11. P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
    [Crossref]
  12. V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Engineering 43, 2400–2409 (2004).
    [Crossref]
  13. K. Earnshaw and J. Owens, “A dual wavelength optical distance measuring instrument which corrects for air density,” IEEE J. Quantum Electron. 3, 544–550 (1967).
    [Crossref]
  14. A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
    [Crossref]
  15. H. Matsumoto and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol. 3, 1084 (1992).
    [Crossref]
  16. K. Meiners-Hagen and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol. 19, 084004 (2008).
    [Crossref]
  17. H. J. Kang, B. J. Chun, Y.-S. Jang, Y.-J. Kim, and S.-W. Kim, “Real-time compensation of the refractive index of air in distance measurement,” Opt. Express 23, 26377–26385 (2015).
    [Crossref]
  18. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
    [Crossref]
  19. G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).
  20. K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
    [Crossref]
  21. K. Wendt, M. Franke, and F. Härtig, “Measuring large 3D structures using four portable tracking laser interferometers,” Measurement 45, 2339–2345 (2012).
    [Crossref]
  22. E. B. Hughes, A. Wilson, and G. N. Peggs, “Design of a high-accuracy cmm based on multi-lateration techniques,” CIRP Annals - Manufacturing Technology 49, 391–394 (2000).
    [Crossref]
  23. F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
    [Crossref]
  24. K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).
  25. D. D. Wijaya and F. K. Brunner, “Atmospheric range correction for two-frequency SLR measurements,” J. Geodesy. 85, 623–635 (2011).
    [Crossref]
  26. Joint Committee for Guides in Metrology, “JCGM 100: Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement,” Tech. Rep., JCGM (2008).

2015 (5)

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[Crossref]

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26, 084003 (2015).
[Crossref]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

H. J. Kang, B. J. Chun, Y.-S. Jang, Y.-J. Kim, and S.-W. Kim, “Real-time compensation of the refractive index of air in distance measurement,” Opt. Express 23, 26377–26385 (2015).
[Crossref]

K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
[Crossref]

2014 (2)

2013 (1)

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

2012 (3)

K. Wendt, M. Franke, and F. Härtig, “Measuring large 3D structures using four portable tracking laser interferometers,” Measurement 45, 2339–2345 (2012).
[Crossref]

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
[Crossref]

2011 (2)

2009 (1)

I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

2008 (1)

K. Meiners-Hagen and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol. 19, 084004 (2008).
[Crossref]

2004 (2)

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Engineering 43, 2400–2409 (2004).
[Crossref]

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

2000 (2)

E. B. Hughes, A. Wilson, and G. N. Peggs, “Design of a high-accuracy cmm based on multi-lateration techniques,” CIRP Annals - Manufacturing Technology 49, 391–394 (2000).
[Crossref]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
[Crossref]

1998 (1)

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[Crossref]

1996 (1)

1992 (1)

H. Matsumoto and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol. 3, 1084 (1992).
[Crossref]

1989 (1)

A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
[Crossref]

1967 (1)

K. Earnshaw and J. Owens, “A dual wavelength optical distance measuring instrument which corrects for air density,” IEEE J. Quantum Electron. 3, 544–550 (1967).
[Crossref]

Abou-Zeid, A.

K. Meiners-Hagen and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol. 19, 084004 (2008).
[Crossref]

Arai, K.

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

Balling, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
[Crossref]

Bhattacharya, N.

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[Crossref]

Bönsch, G.

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[Crossref]

Bosnjakovic, A.

K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
[Crossref]

Bosse, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39, 5834–5837 (2014).
[Crossref]

Brunner, F. K.

D. D. Wijaya and F. K. Brunner, “Atmospheric range correction for two-frequency SLR measurements,” J. Geodesy. 85, 623–635 (2011).
[Crossref]

Buchta, Z.

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Chen, Y.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Chun, B. J.

Ciddor, P. E.

Cip, O.

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Cizek, M.

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Coddington, I.

I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Dale, J.

Doležal, M.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
[Crossref]

Dontsov, D.

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Earnshaw, K.

K. Earnshaw and J. Owens, “A dual wavelength optical distance measuring instrument which corrects for air density,” IEEE J. Quantum Electron. 3, 544–550 (1967).
[Crossref]

Estler, W. T.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Franke, M.

K. Wendt, M. Franke, and F. Härtig, “Measuring large 3D structures using four portable tracking laser interferometers,” Measurement 45, 2339–2345 (2012).
[Crossref]

Gao, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Haitjema, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Härtig, F.

K. Wendt, M. Franke, and F. Härtig, “Measuring large 3D structures using four portable tracking laser interferometers,” Measurement 45, 2339–2345 (2012).
[Crossref]

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

Hieta, T.

Hola, M.

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Honda, T.

H. Matsumoto and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol. 3, 1084 (1992).
[Crossref]

Hrabina, J.

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Hughes, B.

Hughes, E. B.

E. B. Hughes, A. Wilson, and G. N. Peggs, “Design of a high-accuracy cmm based on multi-lateration techniques,” CIRP Annals - Manufacturing Technology 49, 391–394 (2000).
[Crossref]

Inaba, H.

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

Ishida, A.

A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
[Crossref]

Jang, Y.-S.

Kang, H. J.

Keck, C.

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

Kim, S. W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Kim, S.-W.

Kim, Y.-J.

Knapp, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Kniel, K.

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

Köchert, P.

K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
[Crossref]

Korpelainen, V.

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Engineering 43, 2400–2409 (2004).
[Crossref]

Kren, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
[Crossref]

Kunzmann, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Lancaster, A. J.

Lassila, A.

T. Hieta, M. Merimaa, M. Vainio, J. Seppä, and A. Lassila, “High-precision diode-laser-based temperature measurement for air refractive index compensation,” Appl. Opt. 50, 5990–5998 (2011).
[Crossref]

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Engineering 43, 2400–2409 (2004).
[Crossref]

Lazar, J.

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Lewis, A. J.

Lu, X. D.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Mandryka, V.

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Mašika, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
[Crossref]

Matsumoto, H.

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
[Crossref]

H. Matsumoto and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol. 3, 1084 (1992).
[Crossref]

Meiners-Hagen, K.

K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
[Crossref]

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26, 084003 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39, 5834–5837 (2014).
[Crossref]

K. Meiners-Hagen and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol. 19, 084004 (2008).
[Crossref]

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Merimaa, M.

Minoshima, K.

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
[Crossref]

Nenadovic, L. R.

I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Owens, J.

K. Earnshaw and J. Owens, “A dual wavelength optical distance measuring instrument which corrects for air density,” IEEE J. Quantum Electron. 3, 544–550 (1967).
[Crossref]

Peggs, G. N.

E. B. Hughes, A. Wilson, and G. N. Peggs, “Design of a high-accuracy cmm based on multi-lateration techniques,” CIRP Annals - Manufacturing Technology 49, 391–394 (2000).
[Crossref]

Pollinger, F.

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26, 084003 (2015).
[Crossref]

K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39, 5834–5837 (2014).
[Crossref]

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Pöschel, W.

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Potulski, E.

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[Crossref]

Prellinger, G.

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26, 084003 (2015).
[Crossref]

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Reichold, A. J. H.

Rost, K.

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Schott, W.

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Schwenke, H.

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

Seppä, J.

Swann, C. W.

I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Takahashi, M.

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

Tan, J.

Vainio, M.

van den Berg, S. A.

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[Crossref]

van Eldik, S.

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[Crossref]

Wäldele, F.

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

Warden, M. S.

Weckenmann, A.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

Wendt, K.

K. Wendt, M. Franke, and F. Härtig, “Measuring large 3D structures using four portable tracking laser interferometers,” Measurement 45, 2339–2345 (2012).
[Crossref]

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Wijaya, D. D.

D. D. Wijaya and F. K. Brunner, “Atmospheric range correction for two-frequency SLR measurements,” J. Geodesy. 85, 623–635 (2011).
[Crossref]

Wilson, A.

E. B. Hughes, A. Wilson, and G. N. Peggs, “Design of a high-accuracy cmm based on multi-lateration techniques,” CIRP Annals - Manufacturing Technology 49, 391–394 (2000).
[Crossref]

Wu, G. H.

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

Yang, R.

Appl. Opt. (3)

CIRP Annals - Manufacturing Technology (2)

E. B. Hughes, A. Wilson, and G. N. Peggs, “Design of a high-accuracy cmm based on multi-lateration techniques,” CIRP Annals - Manufacturing Technology 49, 391–394 (2000).
[Crossref]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals - Manufacturing Technology 64, 773–796 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Earnshaw and J. Owens, “A dual wavelength optical distance measuring instrument which corrects for air density,” IEEE J. Quantum Electron. 3, 544–550 (1967).
[Crossref]

J. Geodesy. (1)

D. D. Wijaya and F. K. Brunner, “Atmospheric range correction for two-frequency SLR measurements,” J. Geodesy. 85, 623–635 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473–L475 (1989).
[Crossref]

Meas. Sci. Technol. (5)

H. Matsumoto and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol. 3, 1084 (1992).
[Crossref]

K. Meiners-Hagen and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol. 19, 084004 (2008).
[Crossref]

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012).
[Crossref]

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26, 084003 (2015).
[Crossref]

K. Meiners-Hagen, A. Bosnjakovic, P. Köchert, and F. Pollinger, “Air index compensated interferometer as a prospective novel primary standard for baseline calibrations,” Meas. Sci. Technol. 26, 084002 (2015).
[Crossref]

Measurement (1)

K. Wendt, M. Franke, and F. Härtig, “Measuring large 3D structures using four portable tracking laser interferometers,” Measurement 45, 2339–2345 (2012).
[Crossref]

Metrologia (1)

G. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlén’s formulae,” Metrologia 35, 133–139 (1998).
[Crossref]

Nat. Photonics (1)

I. Coddington, C. W. Swann, L. R. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Opt. Engineering (1)

V. Korpelainen and A. Lassila, “Acoustic method for determination of the effective temperature and refractive index of air in accurate length interferometry,” Opt. Engineering 43, 2400–2409 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sci. Rep. (2)

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[Crossref]

G. H. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013).

Sensors (1)

J. Lazar, M. Hola, O. Cip, M. Cizek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors 12, 14084–14094 (2012).
[Crossref]

Technisches Messen (1)

F. Härtig, C. Keck, K. Kniel, H. Schwenke, F. Wäldele, and K. Wendt, “Tracking laser interferometer for coordinate metrology,” Technisches Messen 71, 227–232 (2004).
[Crossref]

Other (2)

K. Meiners-Hagen, F. Pollinger, G. Prellinger, K. Rost, K. Wendt, W. Pöschel, D. Dontsov, W. Schott, and V. Mandryka, “Refractivity compensated tracking interferometer for precision engineering,” in 58th IWK, Ilmenau Scientific Colloquium: Proceedings, P. Scharff, ed. (TU Ilmenau, 2014).

Joint Committee for Guides in Metrology, “JCGM 100: Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement,” Tech. Rep., JCGM (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sketch of the principle optical design of the interferometeric head of the 3D–Lasermeter.
Fig. 2
Fig. 2 Interferometer head of the 3D–Lasermeter and a simplified sketch of main optical elements.
Fig. 3
Fig. 3 Schematic drawing of the set-up (left) and difference between 3D–Lasermeter and reference interferometer, measured on the 50 m comparator (right). Each color in the diagram is assigned to a different measurement.
Fig. 4
Fig. 4 Measurement with heaters in the beam path at GUM for a fixed length of 19 m. (a) Comparison of the length changes Δl of refractive index compensated length measurement with the data for the single wavelengths, evaluated with sensor data and Edlén equation. (b) Amplitudes of the detected beams. (c) Difference between mean value of all 16 temperature sensors and calculated effective optical temperature.
Fig. 5
Fig. 5 Refractive index change during heating.
Fig. 6
Fig. 6 (a) Average temperature along the path and overall temperature change captured by the sensor data. (b) Temperature distribution during the measurement.

Tables (1)

Tables Icon

Table 1 Uncertainty budget for the 3D-Lasermeter for 1D measurements in controlled atmosphere. The probability distribution is abbreviated as N (normal distribution) and R (rectangular).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n ( λ , t , p , x , p w ) 1 = K ( λ ) D ( t , p , x ) p w g ( λ ) ,
l = l 1 A ( l 2 l 1 )
A = n 1 1 n 2 n 1 = K ( λ 1 ) K ( λ 2 ) K ( λ 1 ) .
l = K ( λ 1 ) l 2 K ( λ 2 ) l 1 K ( λ 1 ) K ( λ 2 ) + p w / Pa ( g ( λ 1 ) K ( λ 2 ) ) ( g ( λ 2 ) K ( λ 1 ) )
Δ l 532 = n 532 ( Δ l + l d ) n 532 0 l d Δ l 1064 = n 1064 ( Δ l + l d ) n 1064 0 l d
Δ n = Δ n 532 = Δ l 532 + n 532 0 l d Δ l + l d n 532 0
u n 532 0 = Δ n n 532 0 u ( n 532 0 ) = ( l d Δ l + l d 1 ) u ( n 532 0 )
u d = Δ n l d u ( n 532 0 ) = Δ n Δ l + l d u ( l d )

Metrics