Abstract

Ptychographic Coherent diffractive imaging (PCDI) is a significant advance in imaging allowing the measurement of the full electric field at a sample without use of any imaging optics. So far it has been confined solely to imaging of linear optical responses. In this paper we show that because of the coherence-preserving nature of nonlinear optical interactions, PCDI can be generalised to nonlinear optical imaging. We demonstrate second harmonic generation PCDI, directly revealing phase information about the nonlinear coefficients, and showing the general applicability of PCDI to nonlinear interactions.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ptychographic coherent x-ray diffractive imaging in the water window

K. Giewekemeyer, M. Beckers, T. Gorniak, M. Grunze, T. Salditt, and A. Rosenhahn
Opt. Express 19(2) 1037-1050 (2011)

Ptychographic coherent diffractive imaging with orthogonal probe relaxation

M. Odstrcil, P. Baksh, S. A. Boden, R. Card, J. E. Chad, J. G. Frey, and W. S. Brocklesby
Opt. Express 24(8) 8360-8369 (2016)

Translation position determination in ptychographic coherent diffraction imaging

Fucai Zhang, Isaac Peterson, Joan Vila-Comamala, Ana Diaz, Felisa Berenguer, Richard Bean, Bo Chen, Andreas Menzel, Ian K. Robinson, and John M. Rodenburg
Opt. Express 21(11) 13592-13606 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
    [Crossref] [PubMed]
  2. M. D. Seaberg, B. Zhang, D. F. Gardner, E. R. Shanblatt, M. M. Murnane, H. C. Kapteyn, and D. E. Adams, “Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography,” Optica 1, 39 (2014).
    [Crossref]
  3. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  4. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
    [Crossref]
  5. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
    [Crossref]
  6. J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
    [Crossref] [PubMed]
  7. K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59, 1–99 (2010).
    [Crossref]
  8. A. Yariv, Quantum Electronics (Wiley, 1989), p. 393.
  9. M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
    [Crossref]
  10. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
    [Crossref] [PubMed]
  11. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747–1763 (1995).
    [Crossref]
  12. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  13. R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
    [Crossref]

2015 (1)

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

2012 (1)

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

2010 (1)

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59, 1–99 (2010).
[Crossref]

2009 (2)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

2008 (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

1999 (1)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

1995 (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747–1763 (1995).
[Crossref]

1993 (1)

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

Abbey, B.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Adams, D. E.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Bailey, R. T.

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Bourhill, G.

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

Bunk, O.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Charalambous, P.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Clark, J. N.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Cruickshank, F. R.

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

de Jonge, M.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Diaz, A.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gardner, D. F.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Guizar-Sicairos, M.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Holler, M.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Houe, M.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747–1763 (1995).
[Crossref]

Ishikawa, T.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref] [PubMed]

Kapteyn, H. C.

Kirz, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Maiden, A. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

McNulty, I.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Menzel, A.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Miao, J.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref] [PubMed]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Murnane, M. M.

Nugent, K. A.

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59, 1–99 (2010).
[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Peele, A. G.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Pfeifer, M. A.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Pugh, D.

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

Robinson, I. K.

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref] [PubMed]

Rodenburg, J. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Sayre, D.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Seaberg, M. D.

Shanblatt, E. R.

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Sherwood, J. N.

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

Simpson, G. S.

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Townsend, P. D.

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747–1763 (1995).
[Crossref]

Vila-Comamala, J.

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Williams, G. J.

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1989), p. 393.

Zhang, B.

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Adv. Phys. (1)

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59, 1–99 (2010).
[Crossref]

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

J. Appl. Phys (1)

R. T. Bailey, G. Bourhill, F. R. Cruickshank, D. Pugh, J. N. Sherwood, and G. S. Simpson, “Linear and nonlinear optical properties of the organic nonlinear material 4-nitro-4′-methylbenzylidene aniline,” J. Appl. Phys 73, 1591–1597 (1993).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys. 28, 1747–1763 (1995).
[Crossref]

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Nat. Phys. (1)

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4, 394–398 (2008).
[Crossref]

Nature (1)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999).
[Crossref]

Optica (1)

Phys. Rev. B, (1)

M. Guizar-Sicairos, M. Holler, A. Diaz, J. Vila-Comamala, O. Bunk, and A. Menzel, “Role of the illumination spatial-frequency spectrum for ptychography,” Phys. Rev. B, 86, 100103 (2012).
[Crossref]

Rev. Sci. Instrum (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum 80, 081101 (2009).
[Crossref] [PubMed]

Science (1)

J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 348, 530–535 (2015).
[Crossref] [PubMed]

Ultramicroscopy (1)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Other (1)

A. Yariv, Quantum Electronics (Wiley, 1989), p. 393.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A simplified schema of the SHG CDI setup. A high intensity beam with linear polarization is focused on the sample. Scattered light is collected by a lens (NA=0.4) and the required polarization is selected. An iris placed at an image plane created by the collecting lens provides a virtual aperture to limit the illuminated region, known as the ’probe’. The transmitted light is imaged through a narrow bandwidth filter onto a CCD. placed out of the imaging plane.
Fig. 2
Fig. 2 (a) shows the reconstructed complex linear transmission of the PPLN sample at 400 nm, with a phase ramp due to the sample thickness variation subtracted to show small variation in transmission phase. The upper inset shows the data including the phase ramp, and provides an accurate value of the thickness variation of the wedged sample. The lower inset shows the virtual illumination probe to scale. 2(b) shows the reconstructed nonlinear conversion factor, with significant variation due to the changes in phase-matching and dijk across the sample. Again, the upper inset shows the reconstructed data before phase ramp subtraction. The lower inset shows the virtual probe to scale, as before. 2(c) and 2(d) show magnified images of the virtual illumination probe in the linear experiment (c) and the SHG experiment (d).
Fig. 3
Fig. 3 Close-up of poled region. The left hand image is a close-up of the region shown in the white square in the upper right hand image. The lower right hand image shows a cross-section along the white line of the phase of the nonlinear conversion factor. The dotted lines are spaced by π, and the phase jumps can be seen to have a value of π in areas where the poling is regular
Fig. 4
Fig. 4 Images of the (a) linear transmission and (b) nonlinear conversion factor for a polycrystalline sample of NMBA. The insets show the virtual illumination probe, to scale. (c) and (d) show enlarged versions of the virtual illumination probe structure.
Fig. 5
Fig. 5 (a) Linear transmission and (b) nonlinear conversion factor. The boxed regions show areas where the linear transmission shows little variation, but the phase of the nonlinear conversion factor is changed by π, indicating a reversal of the sign of the nonlinear coefficient due to a reversal of the crystallographic b-axis).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 3 j = i ω 2 μ 0 ϵ d j i k E 1 i E 2 k exp ( i Δ k l ) 1 i Δ k
E 3 j ( r ) = 2 i ω μ 0 E 1 i ( r R n ) 2 [ 1 ϵ ( r ) exp [ i Δ k ( r ) l ( r ) ] 1 i Δ k ( r ) d j i k ( r ) ]

Metrics